Mountains host greater avian diversity than lowlands at the same latitude due to their greater diversity of habitats stratified along an elevation gradient. Here we test whether this greater ecological heterogeneity promotes sympatric speciation. We selected accentors (Prunellidae), an avian family associated with mountains of the Palearctic, as a model system. Accentors differ in their habitat/elevation preferences and south-central Siberia and Himalayan regions each host 6 of the 13 species in the family. We used sequences of the mtDNA ND2 gene and the intron 9 of the Z chromosome specific ACO1 gene to reconstruct a complete species-level phylogeny of Prunellidae. The tree based on joint analysis of both loci was used to reconstruct the family's biogeographic history and to date the diversification events. We also analyzed the relationship between the node age and sympatry, to determine the geographic mode of speciation in Prunellidae. Our data suggest a Miocene origin of Prunellidae in the Himalayan region. The major division between alpine species (subgenus Laiscopus) and species associated with shrubs (subgenus Prunella) and initial diversification events within the latter happened within the Himalayan region in the Miocene and Pliocene. Accentors colonized other parts of the Palearctic during the Pliocene-Pleistocene transition. This spread across the Palearctic resulted in rapid diversification of accentors. With only a single exception dating to 0.91 Ma, lineages younger than 1.5 Ma are allopatric. In contrast, sympatry values for older nodes are >0. There was no relationship between node age and range symmetry. Allopatric speciation (not to include peripatric) is the predominant geographic mode of speciation in Prunellidae despite the favorable conditions for ecological diversification in the mountains and range overlaps among species.
Hewitt's paradigm for effects of Pleistocene glaciations on European populations assumes their isolation in peninsular refugia during glacial maxima, followed by re-colonization of broader Europe during interstadials. This paradigm is well supported by studies of poorly dispersing taxa, but highly dispersive birds have not been included. To test this paradigm, we use the dunnock ( Prunella modularis ), a Western Palaearctic endemic whose range includes all major European refugia. MtDNA gene tree, multilocus species tree and species delimitation analyses indicate the presence of three distinct lineages: one in the Iberian refugium, one in the Caucasus refugium, and one comprising the Italian and Balkan refugia and broader Europe. Our gene flow analysis suggests isolation of both the Iberian and Caucasus lineages but extensive exchange between Italy, the Balkans and broader Europe. Demographic stability could not be rejected for any refugial population, except the very recent expansion in the Caucasus. By contrast, northern European populations may have experienced two expansion periods. Iberia and Caucasus had much smaller historical populations than other populations. Although our results support the paradigm, in general, they also suggest that in highly dispersive taxa, isolation of neighbouring refugia was incomplete, resulting in large super-refugial populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.