Students show deficient understanding on fraction division and supporting that understanding remains a challenge for mathematics educators. This article aims to describe primary students’ understanding of partitive fraction division (PFD) and explore ways to support their understanding through the use of sequenced fractions and context-related graphical representations. In a design-research study, forty-four primary students were involved in three cycles of teaching experiments. Students’ works, transcript of recorded classroom discussion, and field notes were retrospectively analyzed to examine the hypothetical learning trajectories. There are three main findings drawn from the teaching experiments. Firstly, context of the tasks, the context-related graphical representations, and the sequence of fractions used do support students’ understanding of PFD. Secondly, the understanding of non-unit rate problems did not support the students’ understanding of unit rate problems. Lastly, the students were incapable of determining symbolic representations from unit rate problems and linking the problems to fraction division problems. The last two results imply to rethink unit rate as part of a partitive division with fractions. Drawing upon the findings, four alternative ways are offered to support students’ understanding of PFD, i.e., the lesson could be starting from partitive whole number division to develop the notion of fair-sharing, strengthening the concept of unit in fraction and partitioning, choosing specific contexts with more relation to the graphical representations, and sequencing the fractions used, from a simple to advanced form.
[English]: The research aimed to analyze how novice teachers use digital technology and transform their practices from without-technology to with-technology mathematics teachings. Two upper secondary mathematics teachers were involved in this research. They were novice teachers in the use of digital technology in mathematics teachings. Classroom video recording and transcripts were the primary sources of data, meanwhile interview with the teachers and field notes are the supporting data. The teachings videos were categorized into some episodes, transcribed and analyzed following the phases of analyzing classroom video recordings and transcript by Cobb and Whitenack (1996). To capture the whole picture of the teachers’ practices, data analysis was referred to instrumental orchestration (Drijvers et al., 2010) and didactics tetrahedron unfolded (Hollebrands & Okumuş, 2018). In this research, we found that the observed teachers’ orchestrations are mostly non-technology orchestrations. The teachers have a different focus; one focuses only on mathematics and another focus on mathematics through the use of technology. The research concludes that old-fashioned classroom practices can be the pitfall for using digital technology in the mathematics classroom. Keywords: GeoGebra, Mathematics task, Digital technology, Pitfall, Teachers’ practices [Bahasa]: Penelitian ini bertujuan menganalisis bagaimana guru pemula menggunakan teknologi digital dalam kelas dan perubahan praktik pembelajaran setelah menggunakan teknologi. Dua guru matematika SMA menjadi subjek dalam penelitian. Subjek merupakan guru pemula terkait penggunaan teknologi digital dalam pembelajaran matematika. Data utama penelitian diperoleh melalui rekaman video pembelajaran. Hasil wawancara dengan guru dan catatan lapangan digunakan sebagai data pendukung. Video pembelajaran dikelompokkan menjadi beberapa episode, dibuat transkrip dan dianalisis berdasarkan langkah-langkah analisis rekaman video dan transkrip pembelajaran oleh Cobb and Whitenack (1996). Untuk memperoleh gambaran menyeluruh praktik guru, analisis data merujuk pada kerangka orkestra instrumental (Drijvers et al, 2010) dan segiempat didaktik terbuka (Hollebrands & Okumuş, 2018). Penelitian ini menemukan bahwa sebagian besar orkestra guru dalam pembelajaran masih bercirikan pembelajaran tanpa teknologi. Dua guru dalam penelitian ini memiliki fokus yang berbeda dalam pembelajaran yaitu fokus hanya pada matematika dan fokus pada matematika melalui penggunaan teknologi. Hasil penelitian tersebut menunjukan bahwa praktik rutin guru tanpa teknologi bisa menjadi hambatan dalam pembelajaran berbasis teknologi. Kata kunci: GeoGebra, Tugas matematika, Teknologi digital, Hambatan, Praktik Guru NB: PDF version of this article will be available in maximum two weeks after this publication
Abstrak: Artikel ini bertujuan mengulas secara kritis penelitian terkait karakter dan nilai dalam pembelajaran matematika. Data untuk ulasan merupakan artikel hasil penelitian yang ditulis oleh peneliti pendidikan matematika Indonesia dan diterbitkan di jurnal daring yang sudah melalui ulasan sejawat. Artikel dicari melalui basis data ilmiah nasional, DOAJ, dan Google Scholar. Pencarian menghasilkan 40 artikel yang bertujuan membangun karakter dan nilai siswa dalam pembelajaran matematika. Artikel dianalisis secara kualitatif melalui lima langkah yaitu interpretasi teks, penyusunan kode, analisis, diskusi, dan pertimbangan kembali. Ulasan menunjukkan bahwa artikel tersebut memiliki kekurangan dasar teoritis dalam konseptualisasi karakter/nilai, pengembangan karakter/nilai, dan aspek pengukuran. Dua puluh enam artikel yang membahas karakter tidak mendefinisikan istilah tersebut dengan jelas, sedangkan artikel yang lain hanya mengutip beberapa definisi tetapi tidak membuat definisi operasional. Karakter memiliki makna yang bervariasi sehingga membutuhkan definisi operasional untuk mengukur perkembangan pada diri siswa. Dalam mengembangkan karakter dan nilai, beragam strategi digunakan tetapi kebanyakan penulis tidak menjelaskan analisis teoritis and rasionalisasi kenapa strategi tersebut dapat digunakan dan berkaitan dengan konseptualisasi karakter/nilai. Semua artikel tidak memberikan penjelasan apakah instrumen yang dikembangkan sesuai dengan karakteristik perkembangan karakter atau nilai dan memenuhi kriteria psikometri. Dalam hal ini, penelitian terkait karakter/nilai tersebut belum fokus dan berskala kecil. Dalam artikel ini, beberapa teori yang relevan dan hasil penelitian sebelumnya dijelaskan secara mendalam untuk memberikan arah penelitian topik tersebut. Penelitian lebih lanjut yang berkaitan dengan program pendidikan karakter di Indonesia juga dibahas.Abstract: This article aims to critically review researches on characters and values in mathematics teaching and learning. Data for the review was the research articles authored by Indonesian mathematics education researchers and published in the online peer-review journals. The articles were searched in national scientific databases, DOAJ, and Google Scholar. The searches resulted in forty articles which aim to develop students' character and values through mathematics lesson. Five steps, i.e., text interpretation, coding, analysis, discussion, and reconsideration, are employed to analyze the articles qualitatively. The review reveals the articles lack of theoretical basis in the conceptualization of character/values, the development of character/values, and their measurement. Twenty-six articles on character did not define the notion clearly; meanwhile, the other articles only cite some definitions, but no operational definition was made. Character is a multifaceted construct which requires an operational definition to measure its development. In developing character and values, various strategies were utilized, but the most authors have not addressed the...
Abstrak: Penelitian kualitatif ini bertujuan untuk mengungkap strategi yang digunakan mahasiswa dalam melakukan pembuktian soal Geometri. Subjek dalam penelitian ini adalah mahasiswa yang telah menempuh mata kuliah Geometri. Pengumpulan data dilakukan dengan menggunakan metode tes dan wawancara. Hasil penelitian menunjukkan bahwa strategi pembuktian pada soal Geometri dengan tipe pembuktian sintaksis (syntactic proof production) antara lain adalah dengan mengidentifikasi dan memanipulasi pernyataan atau informasi dalam soal, menterjemahkan informasi dalam soal, memilih teorema atau dalil yang relevan, menggunakan simbol atau notasi matematika yang formal dalam melakukan tahapan pembuktian, menggunakan bantuan sketsa, dan menarik kesimpulan dari setiap pernyataan yang telah didapatkan. Sementara strategi pembuktian pada soal Geometri dengan tipe pembuktian semantik (semantic proof production) antara lain adalah dengan menggunakan intuisinya untuk membuat asumsi, dugaan atau perkiraan yang dianggap benar dan melakukan penalaran atas asumsi yang dibuat dan menggunakan sketsa untuk membantu memudahkan pembuktian.Abstract: This qualitative research aims to reveal the strategies that used by students in doing the proof of Geometry. The subjects in this study are students who have taken courses of Geometry. Data is collected through test and interview. The research shows that the strategy of proof of geometry with syntactic proof production type are identifying and manipulating the statement or information in the question, translating the information in the question, choosing the relevant theorem, using formal mathematical symbol or notation in conducting the proof stage, using a sketch, and making a conclusions from every statement that has been obtained. The strategy of proof of geometry with semantic proof production are using his intuition to make assumptions, guesses or estimates that are considered correct and reasoning and using sketches to help facilitate proof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.