Due to its unique structure and excellent purification efficiency (e.g., 98% for organic matter and between 94 and 100% for nutrients), multi-soil-layering (MSL) has emerged as an efficient eco-friendly solution for wastewater treatment and environmental protection. Through infiltration-percolation, this soil-based technology allows pollutants to move from the MSL upper layers to the outlet while maintaining direct contact with its media, which helps in their removal via a variety of physical and biochemical mechanisms. This paper attempts to comprehensively evaluate the application of MSL technology and investigate its progress and efficacy since its emergence. Thus, it will attempt via a bibliometric analysis using the Web of Science database (from 1993 to 01/06/2022) related to MSL technology, to give a clear picture of the number of publications (70 studies), the most active academics, and countries (China with 27 studies), as well as collaborations and related topics. Furthermore, through hybrid combinations, pollutant removal processes, MSL effective media, and the key efficiency parameters, this paper review will seek to provide an overview of research that has developed and examined MSL since its inception. On the other hand, the current review will evaluate the modeling approaches used to explore MSL behavior in terms of pollutant removal and simulation of its performance (R2 > 90%). However, despite the increase in MSL publications in the past years (e.g., 13 studies in 2021), many studies are still needed to fill the knowledge gaps and urging challenges regarding this emerging technology. Thus, recommendations on improving the stability and sustainability of MSLs are highlighted.
This study aims to find the most accurate machine learning algorithms as compared to linear regression for prediction of fecal coliform (FC) concentration in the effluent of a multi‐soil‐layering (MSL) system and to identify the input variables affecting FC removal from domestic wastewater. The effluent quality of two different designs of the MSL system was evaluated and compared for several parameters for potential reuse in agriculture. The first system consisted of a single‐stage MSL (MSL‐SS), and the second system consisted of a two‐stage MSL (MSL‐TS). The concentration of FC in the effluent of the MSL‐TS system was estimated by three machine learning algorithms: artificial neural network (ANN), Cubist, and multiple linear regression (MLR). The accuracy of the models was measured by comparing the real and predicted values. Significant (p < .001) improvements were noted for the removal of pollutants by the MSL‐TS system compared with the MSL‐SS system. Overall, the water quality parameters investigated complied with FAO irrigation standards. The predictive performance of the models has been compared and evaluated using several metrics. The results revealed that the ANN model yielded a superior predictive performance (R2 = .953), followed by the Cubist model (R2 = .946) and the MLR technique (R2 = .481). Based on the accurate model (ANN), the degree of influence of each predictor was investigated, and the results show that total suspended solids and pH have proved to be more useful for predicting FC concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.