Biosorption experiments for Cr(VI), Cu(II), Cd(II) and Ni(II) were investigated in this study using nonliving biomass of different Pseudomonas species. The applicability of the Langmuir and Freundlich models for the different biosorbent was tested. The coefficient of determination (R 2 ) of both models were mostly greater than 0.9. In case of Ni(II) and Cu(II), their coefficients were found to be close to one. This indicates that both models adequately describe the experimental data of the biosorption of these metals. The maximum adsorption capacity was found to be the highest for Ni followed by Cd(II), Cu(II) and Cr(VI). Whereas the Freundlich constant k in case of Cd(II) was found to be greater than the other metals. Maximum Cr(VI) removal reached around 38% and its removal increased with the increase of Cr(VI) influent. Cu(II) removal was at its maximum value in presence of Cr(VI) as a binary metal, which reached 93% of its influent concentration. Concerning to Cd(II) and Ni(II) similar removal ratios were obtained, since it was ranged between 35 to 88% and their maximum removal were obtained in the case of individual Cd(II) and Ni(II). *Corresponding authorThe presence of heavy metals in aquatic environments is known to cause severe damage to aquatic life, beside the fact that these metals kill microorganisms during biological treatment of wastewater with a consequent delay of the process of water purification. Most of the heavy metal salts are soluble in water and form aqueous solutions and consequently cannot be separated by ordinary physical means of separation.Physico-chemical methods, such as chemical precipitation, chemical oxidation or reduction, electrochemical treatment, evaporative recovery, filtration, ion exchange, and membrane technologies have been widely used to remove heavy metal ions from industrial wastewater. These processes may be ineffective or expensive, especially when the heavy metal ions are in solutions containing in the order of 1-100 mg dissolved heavy metal ions/L (Volesky, 1990a; Volesky, 1990b). Biological methods such as biosorption/ bioaccumulation for the removal of heavy metal ions may provide an attractive alternative to physico-chemical methods (Kapoor and Viraraghavan, 1995).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.