The prospect of assisting disabled patients by translating neural activity from the brain into control signals for prosthetic devices, has flourished in recent years. Current systems rely on neural activity present during natural arm movements. We propose here that neural activity present before or even without natural arm movements can provide an important, and potentially advantageous, source of control signals. To demonstrate how control signals can be derived from such plan activity we performed a computational study with neural activity previously recorded from the posterior parietal cortex of rhesus monkeys planning arm movements. We employed maximum likelihood decoders to estimate movement direction and to drive finite state machines governing when to move. Performance exceeded 90% with as few as 40 neurons.
Recurrent vascular compression was seldom identified during posterior fossa reexploration for failed MVD in patients with persistent or recurrent TN or HFS. The previously placed Ivalon sponge or Teflon implant was consistently found to be in good position. Partial sensory trigeminal rhizotomy is an often effective alternative in cases of recurrent TN when neurovascular compression is not identified. However, because of the relatively high incidence of complications associated with reexploration, we recommend other ablative or medical treatments for most patients after failed MVD for TN or HFS.
Radiation-induced delayed brain injury is a well-documented complication of both standard external beam radiation (teletherapy) and interstitial brachytherapy; however, the cause of this damage has not been determined. Cytokines and growth factors are important regulatory proteins controlling the growth and differentiation of normal and malignant glial cells, which have been implicated in the tissue response to radiation injury. Six snap-frozen brain biopsies showing radiation injury were obtained from four patients harboring malignant gliomas who underwent either postoperative external beam and/or stereotactic interstitial brachytherapy at standard dosages. The specimens showed variable amounts of gliosis, tissue necrosis, calcification, inflammation, and vascular proliferation and hyalinization. Frozen tissue sections were examined for the presence of infiltrating lymphocytes, macrophages, cytokines, and other immunoregulatory molecules by the use of a panel of specific monoclonal and polyclonal antibodies. All specimens showed diffuse T cell infiltration with both CD4+ and CD8+ cells. Infiltrating activated macrophages (CD11c+, HLA-DR+) were prominent in five of six cases. Tumor necrosis factor-alpha and interleukin-6 immunoreactivity was prominent in four of six cases and was predominately localized to macrophages. Transforming growth factor-beta astrocytic and macrophage immunoreactivity was present at moderate levels in all cases. This study suggests that in radiation necrosis, interleukin-1 alpha, tumor necrosis factor-alpha, and interleukin-6 are expressed, predominately by infiltrating macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.