Keeping in view the yield losses instigated by heat stress in several crops, we carried out an experiment to explore the curative effect of exogenous applications of proline on the morpho-physiological, biochemical, and water-related attributes of okra genotypes under high-temperature stress (controlled conditions). Four contrasting genotypes C1, C2, C3, and C4 heat tolerant and heat sensitive genotypes were selected from a diverse panel of okra genotypes (n = 100) to examine plant responses to high-temperature stress and exogenous application of proline. Four-week-old seedlings were subjected to heat stress by gradually increasing the temperature of a growth chamber from 28/22 °C to 45/35 °C (day/night) and sprayed with an optimized proline concentration 2.5 mM. The experiment consisted of a factorial arrangement of treatments in a completely randomized design. The results showed that there were maximum increases in shoot length (32.7%), root length (58.9%), and shoot fresh (85.7%). The quantities of leaves per plant were increased by 52.9%, 123.6%, 82.5%, and 62.2% in C1, C2, C3, and C4 after proline application. On the other hand, only root fresh weight decreased in all genotypes after proline application by 23.1%, 20%, 266.7%, and 280.8% (C1, C2, C3, C4). A lower leaf temperature of 27.72 °C, minimum transpiration of 3.29 mmol m−2 s−1, maximum photosynthesis of 3.91 μmol m−2 s−1, and a maximum water use efficiency of 1.20 μmol CO2 mmol H2O were recorded in the genotypes C2, C1, C3, and C4, respectively. The highest enzymatic activity of superoxide dismutase, peroxidase and catalase were 14.88, 0.31, and 0.15 U mg-protein in C2, C1, and C3, respectively. Maximum leaf proline, glycinebetaine, total free amino acids, and chlorophyll content 3.46 mg g−1, 4.02 mg g−1, 3.46 mg g−1, and 46.89 (in C2), respectively, due to foliar applications of proline. Another important finding was that heat tolerance in okra was highly linked highly linked to genotypes’ genetic potential, having more water use efficiency, enzymatic activities, and physio-biochemical attributes under the foliar applications of proline.
Salt stress is the major risk to the seed germination and plant growth via affecting physiological and biochemical activities in plants. Zinc nanoparticles (ZnNPs) are emerged as a key agent in regulating the tolerance mechanism in plants under environmental stresses. However, the tolerance mechanisms which are regulated by ZnNPs in plants are still not fully understood. Therefore, the observation was planned to explore the role of ZnNPs (applied as priming and foliar) in reducing the harmful influence of sodium chloride (NaCl) stress on the development of spinach (Spinacia oleracea L.) plants. Varying concentrations of ZnNPs (0.1%, 0.2% & 0.3%) were employed to the spinach as seed priming and foliar, under control as well as salt stress environment. The alleviation of stress was observed in ZnNPs-applied spinach plants grown under salt stress, with a reduced rise in the concentration hydrogen peroxide, melondialdehyde and anthocyanin contents. A clear decline in soluble proteins, chlorophyll contents, ascorbic acid, sugars, and total phenolic contents was observed in stressed conditions. Exogenous ZnNPs suppressed the NaCl generated reduction in biochemical traits, and progress of spinach plants. However, ZnNPs spray at 0.3% followed by priming was the most prominent treatment in the accumulation of osmolytes and the production of antioxidant molecules in plants.
Aims: To investigate the influence of carbon sources and additives/surfactants on the mycelium growth and exopolysaccharides (EPS) production, including the morphology during submerged cultivation of Pleurotus ostreatus in the minimal-medium as the base medium. Methodology and results: Pleurotus ostreatus was cultivated in different types of carbon sources to investigate the effects of carbon sources to mycelium growth and changes of mycelium morphology which directly affects the synthesis of EPS. In addition, additives or surfactants can increase the bioavailability of less soluble substrates in the cultured medium for the mycelium growth and indirectly affects the EPS production. In this study, the cultivation of P. ostreatus in the minimal-medium by using glucose as the carbon source with the addition of lecithin at 1% (w/v) gave the highest EPS production 4.53 ± 0.30 g/L, an increase of about 89.53% when compared to the cultivation without the addition of lecithin. Addition of lecithin changes morphology of the pellets outer layer and under microscope showing a dense hyphal network surrounding the pellets with the sizes of micro pellets almost 0.5-1.5 mm which contributed to the increase of EPS production after 14 days cultivation at 26 °C. Conclusion, significance and impact of study: The choice of the carbon source should not only be for high productivity rate of mycelium growth and EPS production, but a cheaper alternative source should also be considered. In conclusion, high mycelium biomass and EPS production was achieved either by changes of the morphology through the type of carbon source and addition of additives such as lecithin.
The study carried out aimed at characterizing the pear cultivars and to explore the specific cultivar most suitable to be commercially grown in Soon valley region. Nine pear varieties (Leconte, Bagugosha, Bartlet pear, Concord, Pear selection-1, Pear Red, Pear White, Kashmiri Nashpati and Kashmiri Nakh) were tested for their physiochemical quality attributes. The observations made during the study revealed that variety Bagugosha scored maximum (7.95, 8.10) in taste and flavor respectively. The same variety produced maximum fruit size (5081 mm 2 ), fruit weight (205 g), soluble solid contents (15%) and total sugars (9.56%). However, fruit yield per plant was maximum (98.80 kg) in Bartlet pear variety and Bagugosha produced fruitweight of 60.20 kg. Titratable acidity was determined maximum (0.44%) in Kashmiri Nakh. Number of seeds were maximum (8.20) in Bartlet Pear as well as in Bgugosha. The exploration of this research study revealed that the Bagugosha is the prime quality cultivar to be suggested for commercial cultivation in Soon valley compared to all nine evaluated varieties.
The treatments tested were two sowing dates (Mid November and end November) and six competition durations (No competition, competition for 4,6,8,10 weeks and full season competition). The experiment was laid out in a split plot arrangement with three replications placing the sowing dates and competition durations in the main and sub plots, respectively. Common weeds of wheat were allowed to compete with crop for different prescribed competition durations. The results revealed that various growth and yield components were significantly influenced by sowing dates and weed competition. Significantly maximum grain yield of 6122.21 kg haG 1 was obtained in no weed competition treatment followed by competition upto 4 to 6 weeks which were statistically at par with each other. However, the sowing dates had no significant effect on final grain yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.