In the present work, we explore several gravitational aspects such as energy extraction (via the Penrose process and superradiance), particle collisions around a N = 2 , U(1)2 rotating dyonic black hole (BH) in the gauged supergravity model. The influence of the rotation parameter (a) and the gauge coupling constant (g) on the behavior of the horizon and ergoregion of the BH is investigated. In comparison to the extremal Kerr BH, the gauge coupling constant, under certain constraints, can interestingly enhance the maximum efficiency of energy extraction through the Penrose process by almost twice. Under the same constraints, we can extract approximately 60.75% of the initial mass-energy from the BH which is noticeably higher and far different from that of the Kerr BH. The limit of energy extraction in terms of the local speeds of the fragments is also determined with the help of the Wald inequality. We discover an upper limit on the gauge coupling constant up to which superradiance is likely to occur. Finally, we estimate the center-of-mass energy (E CM) of two particles with the same rest mass moving in the equatorial plane of the BH. Our study also aims to sensitize E CM to the parameters a and g for both extremal and nonextremal spacetime. Especially, for the extremal case, an infinitely large amount of E CM can be achieved closer to the event horizon confirming a basic point of view that an extreme supergravity BH with dyons could serve as ultimate particle accelerators as compared to Kerr and any other generalized BHs in this family and other alternative theories of gravity. However, E CM for the nonextremal spacetime is shown to be finite and has an upper bound.
Over the years, several memory models have been proposed to capture the subtle concurrency semantics of C/C++. One of the most fundamental problems associated with a memory model M is consistency checking: given an execution X , is X consistent with M ? This problem lies at the heart of numerous applications, including specification testing and litmus tests, stateless model checking, and dynamic analyses. As such, it has been explored extensively and its complexity is well-understood for traditional models like SC and TSO. However, less is known for the numerous model variants of C/C++, for which the problem becomes challenging due to the intricacies of their concurrency primitives. In this work we study the problem of consistency checking for popular variants of the C11 memory model, in particular, the RC 20 model, its release-acquire ( RA ) fragment, the strong and weak variants of RA ( SRA and WRA ), as well as the Relaxed fragment of RC 20. Motivated by applications in testing and model checking, we focus on reads-from consistency checking. The input is an execution X specifying a set of events, their program order and their reads-from relation, and the task is to decide the existence of a modification order on the writes of X that makes X consistent in a memory model. We draw a rich complexity landscape for this problem; our results include (i) nearly-linear-time algorithms for certain variants, which improve over prior results, (ii) fine-grained optimality results, as well as (iii) matching upper and lower bounds (NP-hardness) for other variants. To our knowledge, this is the first work to characterize the complexity of consistency checking for C11 memory models. We have implemented our algorithms inside the TruSt model checker and the C11Tester testing tool. Experiments on standard benchmarks show that our new algorithms improve consistency checking, often by a significant margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.