The detailed structure of ZnO doped with 5 at.% (metal) of the large aliovalent Eu3+-ions was investigated using EXAFS to describe the local Eu and Zn coordination. The microstructure, crystalline phases, contents and ZnO unit-cell parameters for the ZnO:5%Eu sponges synthesised at 200 to 900 oC were obtained by XRD, SEM, and TEM analysis. XRD showed peaks solely of h-ZnO for the 600 oC sample, while heating at 700 oC and higher caused phase separation into h-ZnO:Eu and c-Eu2O3. XRD showed a close to zero increase in ZnO unit cell-volume of ca. 0.4 vol%, compared to un-doped ZnO for the non-phase separated, clean oxide made at 600 oC. The Zn EXAFS data showed an almost intact local ZnO structure. The Eu EXAFS showed an unusually low coordination number (CN) of ca. 5 for the 200-600 oC samples, while the CN increased for higher temperatures, in concert with the formation of c-Eu2O3. 23 DFT-generated theoretical ZnO structures containing Eu-clusters built from 1 to 4 Eu3+-Zn2+-vacancy- Eu3+ pairs were compared with the experimental data. The lowest formation energies and ZnO unit-cell volume increase versus un-doped ZnO (0.6-0.7 vol%), were obtained when combining two or four Eu3+-Zn2+-vacancy- Eu3+ pairs into Eu4 and Eu8 clusters showing an average Eu CN of ca. 5. These theoretically determined lowest energy structures were all in good agreement with the experimental results obtained by EXAFS and XRD. Photoluminescence excitation and emission spectra performed on the ZnO:5at%Eu sponges obtained at various temperatures, showed strong quenching of the characteristic Eu3+ transitions for samples obtained at 600 and 800 °C, most likely due to changes in the ZnO defect states, which are crucial for Eu3+ excitation, and due to self-quenching upon Eu clustering and c- Eu2O3 phase separation. Thus, the optical data further supported Eu clustering found by EXAFS, DFT and XRD techniques, corroborating structure-property relationships in these materials. Overall, as far as we can find, the findings reported herein point to a doping structure very different from those previously proposed in the literature. It demonstrates that the semiconductor ZnO can host molecular-sized clusters of metal-oxides, very dissimilar to ZnO.
The prototypical chalcogenide perovskite BaZrS3, with its direct band gap, exceptionally strong light-harvesting ability and good carrier transport properties, provides fundamental prerequisites for a promising photovoltaic material. This inspired synthesis of BaZrS3 in the form of thin films, using sputtering and rapid thermal processing, aimed at device fabrication for future optoelectronic applications. Using a combination of long- and short-range structural information from x-ray absorption spectroscopy (XAS) and x-ray diffraction (XRD), we have elucidated how, starting from a random network of Ba, Zr, S atoms, thermal treatment induces crystallization and growth of BaZrS3 and explained its impact on observed PL properties. We also provide an electronic structure description and confirm the surface material chemistry using a combination of depth-dependent Photoelectron Spectroscopy (PES) using Hard X-ray (HAXPES) and traditional Al Kα radiation. From the knowledge of the optical band gap of BaZrS3 thin films, synthesized at an optimal temperature of 900°C, and our estimation of the valence band edge position with respect to the Fermi level, one may conclude that these semiconductor films are intrinsic in nature with a slight n-type character. A detailed understanding of the growth mechanism and electronic structure of BaZrS3 thin films helps pave the way for their use in photovoltaics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.