In science and engineering applications, it is often required to solve similar computational problems repeatedly. In such cases, we can utilize the data from previously solved problem instances to improve the efficiency of finding subsequent solutions. This offers a unique opportunity to combine machine learning (in particular, meta-learning) and scientific computing. To date, a variety of such domain-specific methods have been proposed in the literature, but a generic approach for designing these methods remains under-explored. In this paper, we tackle this issue by formulating a general framework to describe these problems, and propose a gradient-based algorithm to solve them in a unified way. As an illustration of this approach, we study the adaptive generation of parameters for iterative solvers to accelerate the solution of differential equations. We demonstrate the performance and versatility of our method through theoretical analysis and numerical experiments, including applications to incompressible flow simulations and an inverse problem of parameter estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.