About half of human conceptions are estimated not to be implanted in the uterus, resulting in unrecognizable spontaneous abortions, and about 5% of human births have a recognizable malformation. In order to find clues to the mechanisms of malformation and abortion, we compared the incidences of radiation-induced malformations and abortions in p53 null (p53-/-) and wild-type (p53+/+) mice. After X-irradiation with 2 Gy on day 9.5 of gestation, p53-/- mice showed a 70% incidence of anomalies and a 7% incidence of deaths, whereas p53+/+ mice had a 20% incidence of anomalies and a 60% incidence of deaths. Similar results were obtained after irradiation on day 3.5 of gestation. This reciprocal relationship of radiosensitivity to anomalies and to embryonic or fetal lethality supports the notion that embryonic or fetal tissues have a p53-dependent "guardian" of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of cells with apoptotic DNA fragments was greatly increased in tissues of the p53+/+ fetuses but not in those of the p53-/- fetuses.
In this Letter we report a discovery of a prominent flash of a peculiar overluminous Type Ia supernova, SN 2020hvf, in about 5 hr of the supernova explosion by the first wide-field mosaic CMOS sensor imager, the Tomo-e Gozen Camera. The fast evolution of the early flash was captured by intensive intranight observations via the Tomo-e Gozen high-cadence survey. Numerical simulations show that such a prominent and fast early emission is most likely generated from an interaction between 0.01 M
⊙ circumstellar material (CSM) extending to a distance of ∼1013 cm and supernova ejecta soon after the explosion, indicating a confined dense CSM formation at the final evolution stage of the progenitor of SN 2020hvf. Based on the CSM–ejecta interaction-induced early flash, the overluminous light curve, and the high ejecta velocity of SN 2020hvf, we suggest that the SN 2020hvf may originate from a thermonuclear explosion of a super-Chandrasekhar-mass white dwarf (“super-M
Ch WD”). Systematical investigations on explosion mechanisms and hydrodynamic simulations of the super-M
Ch WD explosion are required to further test the suggested scenario and understand the progenitor of this peculiar supernova.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.