Advances in brain science and computer technology in the past decade have led to exciting developments in brain–computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.
Attention is the ability to facilitate processing perceptually salient information while blocking the irrelevant information to an ongoing task. For example, visual attention is a complex phenomenon of searching for a target while filtering out competing stimuli. In the present study, we developed a new Brain-Computer Interface (BCI) platform to decode brainwave patterns during sustained attention in a participant. Scalp electroencephalography (EEG) signals using a wireless headset were collected in real time during a visual attention task. In our experimental protocol, we primed participants to discriminate a sequence of composite images. Each image was a fair superimposition of a scene and a face image. The participants were asked to respond to the intended subcategory (e.g., indoor scenes) while withholding their responses for the irrelevant subcategories (e.g., outdoor scenes). We developed an individualized model using machine learning techniques to decode attentional state of the participant based on their brainwaves. Our model revealed the instantaneous attention towards face and scene categories. We conducted the experiment with six volunteer participants. The average decoding accuracy of our model was about 77%, which was comparable with a former study using functional magnetic resonance imaging (fMRI). The present work was an attempt to reveal momentary level of sustained attention using EEG signals. The platform may have potential applications in visual attention evaluation and closed-loop brainwave regulation in future.
Growing evidence supports the idea that the ultimate biofeedback is to reward sensory pleasure (e.g., enhanced visual clarity) in real-time to neural circuits that are associated with a desired performance, such as excellent memory retrieval. Neurofeedback is biofeedback that uses real-time sensory reward to brain activity associated with a certain performance (e.g., accurate and fast recall). Working memory is a key component of human intelligence. The challenges are in our current limited understanding of neurocognitive dysfunctions as well as in technical difficulties for closed-loop feedback in true real-time. Here we review recent advancements of real time neurofeedback to improve memory training in healthy young and older adults. With new advancements in neuromarkers of specific neurophysiological functions, neurofeedback training should be better targeted beyond a single frequency approach to include frequency interactions and event-related potentials. Our review confirms the positive trend that neurofeedback training mostly works to improve memory and cognition to some extent in most studies. Yet, the training typically takes multiple weeks with 2–3 sessions per week. We review various neurofeedback reward strategies and outcome measures. A well-known issue in such training is that some people simply do not respond to neurofeedback. Thus, we also review the literature of individual differences in psychological factors e.g., placebo effects and so-called “BCI illiteracy” (Brain Computer Interface illiteracy). We recommend the use of Neural modulation sensitivity or BCI insensitivity in the neurofeedback literature. Future directions include much needed research in mild cognitive impairment, in non-Alzheimer’s dementia populations, and neurofeedback using EEG features during resting and sleep for memory enhancement and as sensitive outcome measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.