Plasmonic-photonic interactions have stimulated significant interdisciplinary interest, leading to rapid innovations in solar design and biosensors. However, the development of an optically pumped plasmonic laser has failed to keep pace due to the difficulty of integrating a plasmonic gain material with a suitable pump source. In the present work, we develop a method for coating high quality factor toroidal optical cavities with gold nanorods, forming a photonic-plasmonic laser. By leveraging the two-photon upconversion capability of the nanorods, lasing at 581 nm with a 20 μW threshold is demonstrated.
Owing to the high precision and sensitivity of optical systems, there is an increasing demand for optical methods that quantitatively characterize the physical and chemical properties of biological samples. Information extracted from such quantitative methods, through phase and/or amplitude variations of light, can be crucial in the diagnosis, treatment and study of disease. In this work we apply a recently developed quantitative method, called ultraviolet hyperspectral interferometry (UHI), to characterize the dispersion and absorbing properties of various important biomolecules. Our system consists of (1) a broadband light source that spans from the deep-UV to the visible region of the spectrum, and (2) a Mach-Zehnder interferometer to gain access to complex optical properties. We apply this method to characterize (and tabulate) the dispersive and absorptive properties of hemoglobin, beta nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD), elastin, collagen, cytochrome c, tryptophan and DNA. Our results shed new light on the complex properties of important biomolecules.
Bacteria exhibit surface motility modes that play pivotal roles in early-stage biofilm community development, such as type IV pili-driven “twitching” motility and flagellum-driven “spinning” and “swarming” motility. Appendage-driven motility is controlled by molecular motors, and analysis of surface motility behavior is complicated by its inherently 3D nature, the speed of which is too fast for confocal microscopy to capture. Here, we combine electromagnetic field computation and statistical image analysis to generate 3D movies close to a surface at 5 ms time resolution using conventional inverted microscopes. We treat each bacterial cell as a spherocylindrical lens and use finite element modeling to solve Maxwell’s equations and compute the diffracted light intensities associated with different angular orientations of the bacterium relative to the surface. By performing cross-correlation calculations between measured 2D microscopy images and a library of computed light intensities, we demonstrate that near-surface 3D movies of Pseudomonas aeruginosa translational and rotational motion are possible at high temporal resolution. Comparison between computational reconstructions and detailed hydrodynamic calculations reveals that P. aeruginosa act like low Reynolds number spinning tops with unstable orbits, driven by a flagellum motor with a torque output of ~2 pN μm. Interestingly, our analysis reveals that P. aeruginosa can undergo complex flagellum-driven dynamical behavior, including precession, nutation, and an unexpected taxonomy of surface motility mechanisms, including upright-spinning bacteria that diffuse laterally across the surface, and horizontal bacteria that follow helicoidal trajectories and exhibit superdiffusive movements parallel to the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.