In the present investigation, an Al/WO 3 p metal matrix nanocomposite was fabricated by accumulative roll bonding (ARB) technique. Microstructural evaluation and mechanical properties of specimens were studied by Field Emission-Scanning Electron Microscopy, X-ray Diffraction, microhardness and tensile test. Several factors that affect uniform distribution of reinforcing particles were investigated. At the initial stages of ARB process particle free zones as well as particle clusters were observed in the microstructure of the composite. After 12 ARB cycles, a nanocomposite with a uniform distribution of nanoparticles was produced. It was shown that the tensile strength of the ARBed composite enhanced with the increasing number of ARB cycles. After the first cycle, a significant increase was observed in the tensile strength of nanocomposite in 2.0 percent volume of WO 3p , from 89 MPa to 128 MPa (almost 1.4 times increase in strength). After the final cycle, the tensile strength value increased to 205 MPa (that is almost 2.3 times increase in strength) due to the strain hardening and grain refinement. The X-ray diffraction results showed that Al/WO 3p nanocomposite with the average crystallite size of 41 nm was successfully attained after 12 cycles of the ARB process. Finally, observations revealed that the fracture mode in Al/WO 3p nanocomposite was of type shearing ductile fracture with elongated shallow dimples.
Certain amount of retained austenite can increase ductility of steels because of the TRIP phenomenon during plastic deformation. One method for achieving this is partitioning of carbon into austenite to stabilize it at room temperature. The quenching and partitioning (Q&P) heat treatment leads to a microstructure consisting of martensite and stabilized retained austenite between martensite plates, which provides a better combination of strength and ductility. In this study, the effect of parameters of Q&P process (quenching temperature, partitioning temperature and partitioning time) on the microstructure and retained austenite volume fraction of a low alloy medium carbon steel was investigated. The results showed that the high increase in partitioning time causes the disappearance of martensite blades and reduction of austenite volume fraction. However, increasing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.