Today's vehicles are advancing from stand-alone transportation means to vehicle-to-vehicle, and vehicle-toinfrastructure communications enabled devices which are able to exchange data through the transportation communication infrastructure. As the IoT and data remain intrinsically linked together, the fast-changing mobility landscape of intent-based networking for the Internet of connected vehicles comes with a great risk of data security and privacy violations. This paper considers the privacy issues in the distributed edge computing, in which the data is communicated between a number of vehicles in the IoT layer and potentially untrusted edge controllers at the edge of the network. The sensory data communicated by the vehicles contain sensitive information, such as location and speed, which could violate the users' privacy if they are leaked with no perturbation. Recent studies suggest mechanisms for randomizing the stream of data to ensure individuals' privacy. Although the past works on differential privacy provide a strong privacy guarantee, they are limited to applications where communication parties are trusted and/or there is no correlation between the users or the featured of sensory data. In this paper, we address this gap by proposing a differentially private data streaming system that adds a correlated noise in the vehicle's side (IoT layer) rather than the transportation infrastructure. Also, our system is able to ensure a strong privacy level over time. The proposed mechanism is data-adaptive and scales the noise with respect to the data correlation. Our extensive experiments demonstrate that the utility of the output generated by our method outperforms the recent approaches.Index Terms-Differential privacy, edge computing, intelligent transportation system, intent-based networking, Internet of connected vehicles.
We propose a novel algorithm to ensuredifferential privacy for answering range queries on trajectory data. In order to guarantee privacy, differential privacy mechanisms add noise to either data or query, thus introducing errors to queries made and potentially decreasing the utility of information. In contrast to the state-of-the-art, our method achieves significantly lower error as it is the first data-and query-aware approach for such queries. The key challenge for answering range queries on trajectory data privately is to ensure an accurate count. Simply representing a trajectory as a set instead of sequence of points will generally lead to highly inaccurate query answers as it ignores the sequential dependency of location points in trajectories, i.e., will violate the consistency of trajectory data. Furthermore, trajectories are generally unevenly distributed across a city and adding noise uniformly will generally lead to a poor utility. To achieve differential privacy, our algorithm adaptively adds noise to the input data according to the given query set. It first privately partitions the data space into uniform regions and computes the traffic density of each region. The regions and their densities, in addition to the given query set, are then used to estimate the distribution of trajectories over the queried space, which ensures high accuracy for the given query set. We show the accuracy and efficiency of our algorithm using extensive empirical evaluations on real and synthetic data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.