Protein-and peptide-based manufacturing of self-assembled supramolecular functional materials has been a formidable challenge for biomedical applications, being complex in structure and immunogenic in nature. In this context, selfassembly of short amino acid sequences as simplified building blocks to design metal−biomolecule frameworks (MBioFs) is an emerging field of research. Here, we report a facile, bioinspired route of anisotropic nanostructure synthesis using gold binding peptides (10−15mers) secreted by cancer cells. The bioinformatics tool i-TASSER predicts the effect of amino acid sequences on metal binding sites and the secondary structures of the respective peptide sequence. Electron microscopy, X-ray, infrared, and Raman spectroscopy validated the versatile anisotropic gold nanostructures and the metal−bioorganic nature of this biomineralization. We studied the influence of precursor salt, pH, and peptide concentration on the evolution of nanoleaf, nanoflower, nanofiber, and dendrimer-like anisotropic MBioFs. Characterization of photothermal properties using infrared laser (785 nm) revealed excellent conversion of light into heat. Exposure of bacterial cells in culture exhibits high rate of photothermal death using lower laser power (1.9 W/cm 2 ) compared with recent reports. The MBioF's self-assembly process shown here can readily be extended and adapted to superior plasmonic material synthesis with a promising photothermal effect for in vivo biofilm destruction and cancer hyperthermia applications.
MCF7 Cells biomineralize gold ions into long aspect-ratio nanoribbons in the presence of spherical nanoparticles as seeds with excellent photothermal properties.
Two-Dimensional Infrared (2D-IR) spectroscopy is used to detect binding of paracetamol with proteins in blood serum. Quantitative peak patterns are observed indicating structural changes of the albumins' secondary structure when paracetamol bound.
Magnetooptical spatial light modulators (MOSLMs) are photonic devices that encode information in photonic waveforms by changing their amplitude and phase using magnetooptical Faraday or Kerr rotation. Despite the progress on both MO materials and switching methods, significant improvements on materials engineering and SLM design are needed for demonstrating low-power, multicolor, analog and high-contrast MOSLM devices. In this study, we present design rules and example designs for a high-contrast and large figure-of-merit MOSLM using three-color magnetophotonic crystals (MPC). We demonstrate for the first time, a three-defect MPC capable of simultaneously enhancing Faraday rotation, and high-contrast modulation at three fundamental wavelengths of red, green and blue (RGB) within the same pixel. We show using 2D finite-difference time-domain simulations that bismuth-substituted yttrium iron garnet films are promising for low-loss and high Faraday rotation MOSLM device in the visible band. Faraday rotation and loss spectra as well as figure-of-merit values are calculated for different magnetophotonic crystals of the form (H/L)p/(D/L)q/(H/L)p. After an optimization of layer thicknesses and MPC configuration, Faraday rotation values were found to be between 20–55° for losses below 20 dB in an overall thickness less than 1.5 µm including three submicron garnet defect layers. The experimental demonstration of our proposed 3-color MOSLM devices can enable bistable photonic projectors, holographic displays, indoor visible light communication devices, photonic beamforming for 5 G telecommunications and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.