This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color.
Nanohybrid (GO-PEI) membranes with hydrophilic property were synthesized and can be used to dehydrate biofuels such as n-butanol with high permeation and separation factor.
Among many purification processes, pervaporation is one of the promising technologies which is an indispensable component for chemical separations with low energy consumption, minimum contamination and ability to break up azeotropic mixtures. The key success of pervaporation process is dependent on the membrane features (chemical components and morphology). Application of membranes surveyed in three categories included organic solvent dehydration, removal of organics from solvent and separation of organic solvents. This article review discusses different types of pervaporation membranes from the perspective of membrane fabrication and materials in biofuel products.
In the present investigation, laboratory synthesized graphene oxide (GO) as a nano-filler was used in polyetherimide (PEI) flat-sheet membranes (PM). The PEI flat-sheet membrane was fabricated through a dry-thermal treatment (DTT) method. The effects of fabrication method were investigated on polyetherimide-GO membrane prepared by dry-thermal treatment (PMDTT). The morphological structure was investigated via different characterization; Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), contact angle measurement and Raman spectra. The results indicated that, the hybrid PMDTT membrane displayed reasonably better pervaporation separation performance in comparison to neat PMDTT membranes. The concentrations of water at the permeate side of hybrid and neat PMDTT membrane were 99.3 and 90.9 wt.%, respectively. Hybrid membranes showed a 78.3% enhanced permeation rate. Enhancement of pervaporation property of hybrid PMDTT membrane could be ascribed mainly due to the presence of graphene oxide in the dense top layer. Overall, the blending of graphene oxide in hybrid PMDTT membranes could be a promising approach for enhancing the pervaporation properties of the membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.