Wearable smart sensors are emerging technology for daily monitoring of vital signs with the reducing discomfort and interference with normal human activities. The main objective of this study was to review the applied wearable smart sensors for disease control and vital signs monitoring in epidemics outbreaks. A comprehensive search was conducted in Web of Science, Scopus, IEEE Library, PubMed and Google Scholar databases to identify relevant studies published until June 2, 2020. Main extracted specifications for each paper are publication details, type of sensor, disease, type of monitored vital sign, function and usage. Of 277 articles, 11 studies were eligible for criteria. 36% of papers were published in 2020. Articles were published in 10 different journals and only in the Journal of Medical Systems more than one article was published. Most sensors were used to monitor body temperature, heart rate and blood pressure. Wearable devices (like a helmet, watch, or cuff) and body area network sensors were popular types which can be used monitoring vital signs for epidemic trending. 65% of total papers (n = 6) were conducted by the USA, Malaysia and India. Applying appropriate technological solutions could improve control and management of epidemic disease as well as the application of sensors for continuous monitoring of vital signs. However, further studies are needed to investigate the real effects of these sensors and their effectiveness.
Background Detecting brain tumors in their early stages is crucial. Brain tumors are classified by biopsy, which can only be performed through definitive brain surgery. Computational intelligence-oriented techniques can help physicians identify and classify brain tumors. Herein, we proposed two deep learning methods and several machine learning approaches for diagnosing three types of tumor, i.e., glioma, meningioma, and pituitary gland tumors, as well as healthy brains without tumors, using magnetic resonance brain images to enable physicians to detect with high accuracy tumors in early stages. Materials and Methods A dataset containing 3264 Magnetic Resonance Imaging (MRI) brain images comprising images of glioma, meningioma, pituitary gland tumors, and healthy brains were used in this study. First, preprocessing and augmentation algorithms were applied to MRI brain images. Next, we developed a new 2D Convolutional Neural Network (CNN) and a convolutional auto-encoder network, both of which were already trained by our assigned hyperparameters. Then 2D CNN includes several convolution layers; all layers in this hierarchical network have a 2*2 kernel function. This network consists of eight convolutional and four pooling layers, and after all convolution layers, batch-normalization layers were applied. The modified auto-encoder network includes a convolutional auto-encoder network and a convolutional network for classification that uses the last output encoder layer of the first part. Furthermore, six machine-learning techniques that were applied to classify brain tumors were also compared in this study. Results The training accuracy of the proposed 2D CNN and that of the proposed auto-encoder network were found to be 96.47% and 95.63%, respectively. The average recall values for the 2D CNN and auto-encoder networks were 95% and 94%, respectively. The areas under the ROC curve for both networks were 0.99 or 1. Among applied machine learning methods, Multilayer Perceptron (MLP) (28%) and K-Nearest Neighbors (KNN) (86%) achieved the lowest and highest accuracy rates, respectively. Statistical tests showed a significant difference between the means of the two methods developed in this study and several machine learning methods (p-value < 0.05). Conclusion The present study shows that the proposed 2D CNN has optimal accuracy in classifying brain tumors. Comparing the performance of various CNNs and machine learning methods in diagnosing three types of brain tumors revealed that the 2D CNN achieved exemplary performance and optimal execution time without latency. This proposed network is less complex than the auto-encoder network and can be employed by radiologists and physicians in clinical systems for brain tumor detection.
Introduction. Treatment of speech disorders during childhood is essential. Many technologies can help speech and language pathologists (SLPs) to practice speech skills, one of which is digital games. This study aimed to systematically investigate the games developed to treat speech disorders and their challenges in children. Methods. A comprehensive search was conducted in four databases, including Medline (through PubMed), Scopus, Web of Science, and IEEE Xplore, to retrieve English articles published by July 14, 2021. The articles in which a digital game was developed to treat speech disorders in children were included in the study. Then, the features of the designed games and their challenges were extracted from the studies. Results. After reviewing the full texts of 69 articles and assessing them in terms of inclusion and exclusion criteria, 27 articles were included in the systematic review. In these articles, 59.25% of the games had been developed in English language and children with hearing impairments had received much attention from researchers compared to other patients. Also, the Mel-Frequency Cepstral Coefficients (MFCC) algorithm and the PocketSphinx speech recognition engine had been used more than any other speech recognition algorithm and tool. In terms of the games, 48.15% had been designed in a way that children could practice with the help of their parents. The evaluation of games showed a positive effect on children’s satisfaction, motivation, and attention during speech therapy exercises. The biggest barriers and challenges mentioned in the studies included sense of frustration, low self-esteem after several failures in playing games, environmental noise, contradiction between games levels and the target group’s needs, and problems related to speech recognition. Conclusion. The results of this study showed that the games positively affect children’s motivation to continue speech therapy, and they can also be used as the SLPs’ aids. Before designing these tools, the obstacles and challenges should be considered, and also, the solutions should be suggested.
Objective. A large number of patients need critical physical rehabilitation after the stroke. This study aimed to review and report the result of published studies, in which newly emerged games were employed for physical rehabilitating in poststroke patients. Materials and Methods. This systematic review study was performed based on the PRISMA method. A comprehensive search of PubMed, Scopus, IEEE Xplore Digital Library, and ISI Web of Science was conducted from January 1, 2014, to November 9, 2020, to identify related articles. Studies have been entered in this review based on inclusion and exclusion criteria, in which new games have been used for physical rehabilitation. Results. Of the 1326 retrieved studies, 60 of them met our inclusion criteria. Virtual reality-oriented games were the most popular type of physical rehabilitation approach for poststroke patients. “The Nintendo Wii Fit” game was used more than other games. The reviewed games were mostly operated to balance training and limb mobilization. Based on the evaluation results of the utilized games, only in three studies, applied games were not effective. In other studies, games had effective outcomes for target body members. Conclusions. The results indicate that modern games are efficient in poststroke patients’ physical rehabilitation and can be used alongside conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.