3D nanocomposite scaffolds have attracted significant attention in bone tissue engineering applications. In the current study, we fabricated a 3D nanocomposite scaffold based on a bacterial polyglucuronic acid (PGU) and sodium alginate (Alg) composite with carbon nanofibers (CNFs) as the bone tissue engineering scaffold. The CNFs were obtained from electrospun polyacrylonitrile nanofibers through heat treatment. The fabricated CNFs were incorporated into a PGU/Alg polymeric solution, which was physically cross-linked using CaCl2 solution. The fabricated nanocomposites were characterized to evaluate the internal structure, porosity, swelling kinetics, hemocompatibility, and cytocompatibility. The characterizations indicated that the nanocomposites have a porous structure with interconnected pores architecture, proper water absorption, and retention characteristics. The in vitro studies revealed that the nanocomposites were hemocompatible with negligible hemolysis induction. The cell viability assessment showed that the nanocomposites were biocompatible and supported bone cell growth. These results indicated that the fabricated bacterial PGU/Alg/CNFs hydrogel nanocomposite exhibited appropriate properties and can be considered a new biomaterial for bone tissue engineering scaffolds.
The main aim of the current study is to fabricate an osteocompatible, bioactive, porous, and degradable bone tissue engineering scaffold. For this purpose, bioactive glasses (BGs) were chosen due to their similarity to bone’s natural mineral composition, and the effect of replacing Ca ions with Sr on their properties were considered. First, strontium-containing BGs (Sr-BGs) were synthesized using the electrospinning technique and assembled by the sol–gel method, then they were incorporated into the alginate (Alg) matrix. Photographs of the scanning electron microscope (SEM) showed that the BG nanofibers have a diameter of 220 ± 36 nm, which was smaller than the precursor nanofibers (275 ± 66 nm). The scaffolds possess a porous internal microstructure (230–330 nm pore size) with interconnected pores. We demonstrated that the scaffolds could be degraded in the acetate sodium buffer and phosphate-buffered saline. The osteoactivity of the scaffolds was confirmed via visual inspection of the SEM illustrations after seven days of immersing them in the SBF solution. In vitro
Website accessibility is a key factor in meeting individuals’ needs and expectations. Considering the lack of research on the accessibility of Iranian medical libraries’ websites, the aim of the present study is to evaluate the compliance of the central library websites of Iranian universities of medical sciences using the latest WCAG2.1 guideline. The research includes all the 51 homepages of the central libraries of Iranian medical universities. The accessibility evaluation of each homepage performed using “Webaccessibility” automated testing tool. The Kruskal–Wallis one-way analysis of variance was performed to explore the association of the compliance score of libraries’ websites among the three categories of medical universities. The findings of the present study revealed that none of the central library websites of the Iranian medical sciences universities are fully compliant with WCAG2.1, and the mean compliance score of accessibility was 77.26 ± 5.862 percent. The low accessibility of the library websites may result in making online information services and resources inaccessible and unusable to users who are disabled. Therefore, it is necessary for library managers and website designers to solve the accessibility problems and improve the accessibility of the websites to make them accessible for all users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.