The efficiency of hybrid electric powertrains is heavily dependent on energy and power management strategies, which are sensitive to the dynamics of the powertrain components that they use. In this study, a Modified Particle Swarm Optimization (Modified PSO) methodology, which incorporates novel concepts such as the Vector Particle concept and the Seeded Particle concept, has been developed to minimize the fuel consumption and NOx emissions for an extended-range electric vehicle (EREV). An optimization problem is formulated such that the battery state of charge (SOC) trajectory over the entire driving cycle, a vector of size 50, is to be optimized via a control lever consisting of 50 engine/generator speed points spread over the same 2 h cycle. Thus, the vector particle consisted of the battery SOC trajectory, having 50 elements, and 50 engine/generator speed points, resulting in a 100-D optimization problem. To improve the convergence of the vector particle PSO, the concept of seeding the vector particles was introduced. Additionally, further improvements were accomplished by adapting the Time-Varying Acceleration Coefficients (TVAC) PSO and Frankenstein’s PSO features to the vector particles. The MATLAB/SIMULINK platform was used to validate the developed commercial vehicle hybrid powertrain model against a similar ADVISOR powertrain model using a standard rule-based PMS algorithm. The validated model was then used for the simulation of the developed, modified PSO algorithms through a multi-objective optimization strategy using a weighted sum fitness function. Simulation results show that a fuel consumption reduction of 12% and a NOx emission reduction of 35% were achieved individually by deploying the developed algorithms. When the multi-objective optimization was applied, a simultaneous reduction of 9.4% fuel consumption and 7.9% NOx emission was achieved when compared to the baseline model with the rule-based PMS algorithm.
The objective of this paper is to formulate and analyze the benefits of a predictive non-linear multi objective optimization method for a platoon of mild-hybrid line haul trucks. In this study a group of three trucks with hybrid electric powertrain are considered in a platoon formation where each truck has a predictive optimal control to save fuel with out any loss of trip time. While the controller on each truck uses the look ahead knowledge of the entire route in terms of road grade, the overall platoon controller used a multi agent method (Metropolis algorithm) to define coordination between the trucks. While the individual trucks, showed significant improvement in fuel economy when running on predictive mode, the true savings came from the entire platoon and showed promising results in terms of absolute fuel economy without trading off on total trip time. The proposed algorithm also proved to be significantly emission efficient. A platoon of 3 trucks achieved an average of 10% fuel savings while cutting back 13% on engine out NOx emissions for engine off coasting and 9.3% fuel saving with 8% emissions reduction for engine idle coast configuration when compared to non-predictive non-platoon configuration.
Fuel consumption, subsequent emissions and safe operation of class 8 vehicles are of prime importance in recent days. It is imperative that a vehicle operates in its true optimal operating region, given a variety of constraints such as road grade, load, gear shifts, battery state of charge (for hybrid vehicles), etc. In this paper, a research study is conducted to evaluate the fuel economy and subsequent emission benefits when applying predictive control to a mild hybrid line-haul truck. The problem is solved using a combination of dynamic programming with backtracking and model predictive control. The specific fuel-saving features that are studied in this work are dynamic cruise control, gear shifts, vehicle coasting and torque management. These features are evaluated predictively as compared to a reactive behavior. The predictive behavior of these features is a function of road grade. The result and analysis show significant improvement in fuel savings along with NOx benefits. Out of the control features, dynamic cruise (predictive) control and dynamic coasting showed the most benefits, while predictive gear shifts and torque management (by power splitting between battery and engine) for this architecture did not show fuel benefits but provided other benefits in terms of powertrain efficiency.
Fuel consumption, subsequent emissions and safe operation of class 8 vehicles are of prime importance in recent days. It is imperative that the vehicle operates in its true optimal operating region given a variety of constraints such as road grade, load, gear shifts, Battery State of charge (for hybrid vehicles), etc. In this paper a research study is conducted to evaluate the fuel economy and subsequent emission benefits when applying predictive control to a mild hybrid line haul truck. The problem is solved using a combination of dynamic programming with back tracking and model predictive control. The specific fuel saving features that are studied in this work are dynamic cruise control, gear shifts, vehicle coasting and torque management. These features are evaluated predictively as compared to a reactive behavior. The predictive behavior of these features are a function of road grade. The result and analysis shows significant improvement in fuel savings along with NOx benefits. Out of the control features dynamic cruise (predictive) control and dynamic coasting showed the most benefits while predictive gear shifts and torque management (by power splitting between battery and engine) for this architecture did not show fuel benefits but provided other benefits in terms of powertrain efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.