Ahmed body is a standard configuration of road vehicles and most of the studies of automobile aerodynamics are performed based on it. In this paper, the plasma actuator was used as an active flow control method to control the flow around the rear part of the Ahmed body with the rear slant angle of 25°. Experiments were carried out in a wind tunnel at two different velocities of U=10m/s and U=20m/s using steady and unsteady excitations. The hot-wire anemometer was used to measure the vortex shedding frequency at the downstream of the body. Pressure distribution was measured using 52 sensors and total drag force was extracted with a load cell. Furthermore, smoke flow visualization was employed to investigate the flow pattern around the body. The results showed that the plasma actuator was more effective on the pressure distribution and total drag force at the velocity of U=10m/s. In fact, by applying steady and unsteady excitations there was 7.3% and 5% drag reduction; respectively. While at the velocity of U=20m/s; the actuator had no significant effect on pressure distribution and total drag. As a remarkable result, the plasma actuator, especially in the steady actuation, has demonstrated its effectiveness on dispersing the longitudinal vortices and suppressing the separated flow on the rear slant at low velocities.
The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuators in quiescent air. The parameters affecting the operation of unsteady plasma actuators were experimentally measured and compared with the ones for steady actuators. The effects of excitation frequency and duty cycle on the induced flow pattern properties were studied by means of hot-wire anemometers, and the smoke visualization method was also used. It was observed that the current and the mean induced velocity linearly increase with increasing duty cycle while they are not sensitive to excitation frequency. Furthermore, with increasing excitation frequency, the magnitude of vortices shedding from the actuator decreases while their frequency increases. Nevertheless, when the excitation frequency grows beyond a certain level, the induced flow downstream of the actuator behaves as a steady flow. However, the results for steady actuators show that by increasing the applied voltage and carrier frequency, the velocity of the induced flow first increases and then decreases with actuator saturation and the onset of the emission of streaky glow discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.