Five of the most commonly used materials for shoe inserts (soft Plastazote, medium Pelite, PPT, Spenco, and Sorbothane) were objectively evaluated in the laboratory to characterize their behavior in the following three specific functions that correspond to clinical use: (1) the effect on the materials of repeated compression. (2) the effect of a combination of repetitive shear and compression. (3) the force-distribution (force-attenuation) properties of these materials, both when new and after repeated compression. The last function represents a model for relief of pressure beneath plantar bony prominences, a topic of special concern for the insensitive foot. All materials were effective in reducing transmitted force over the simulated bony prominence with a rank order of effectiveness. Other factors considered were: amount and rate of permanent deformation offset by considerations of enhanced moldability when comparing the neoprene and urethane materials with the polyethylene foams. The ideal insert represents a combination of material to achieve both durability and moldability.
The osteoconductive capacity of fibrillar collagen-biphasic calcium phosphate composition was compared to autogenous bone in a canine spinal fusion model. All animals underwent a standard intervertebral body fusion (L2-L4) with rigid internal fixation and received either autogenous bone alone or a mixture of the ceramic and autogenous bone (3:1) as the graft material. Animals were followed for 12 months and the quality of fusion in each animal assessed by biomechanical testing and histological analysis. The fused L2-L4 segment of each dog was embedded in bone cement and mounted in a specially designed mechanical tester for testing in flexion, extension, and side bending. Overall, the mean rigidity of the fusion mass was not significantly different between the two groups [10.5 +/- 4.1 (SD) for autogenous bone vs. 11.3 +/- 1.7 for the ceramic plus autogenous bone, p greater than 0.05]. Similar findings were obtained for mean bending moment, compressive load, angular deformation, and energy absorbed for the two groups. Histological analysis was performed on transverse nondecalcified specimens. Quantitation of bone ingrowth using back-scattered electron imaging disclosed no significant differences in the amount of new bone formed at the graft site between autogenous bone and the ceramic plus autogenous bone recipients (23.4 +/- 10% vs. 25.8 +/- 8.8%) when correction for the autogenous bone volumes was performed. Light microscopic analysis of toluidine blue-stained transverse sections demonstrated new bone growth around and through the ceramic bone graft material. These results suggest that use of a collagen-biphasic calcium phosphate ceramic and autogenous bone mixture (3:1) provides a suitable osteoconductive alternative to the use of autogenous bone and results in the formation of a mechanically competent fusion mass not significantly different from that obtained with autogenous bone alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.