Objective. Electrical neuromodulation is a clinically effective therapeutic instrument, currently expanding into newer indications and larger patient populations. Neuromodulation technologies are also moving towards less invasive approaches to nerve stimulation. In this study, we investigated an enhanced transcutaneous electrical nerve stimulation (eTENS) system that electrically couples a conductive nerve cuff with a conventional TENS electrode. The objectives were to better understand how eTENS achieves lower nerve activation thresholds, and to test the feasibility of applying eTENS in a human model of peripheral nerve stimulation. Approach. A finite element model (FEM) of the human lower leg was constructed to simulate electrical stimulation of the tibial nerve, comparing TENS and eTENS. Key variables included surface electrode diameter, nerve cuff properties (conductivity, length, thickness), and cuff location. Enhanced neural excitability was predicted by relative excitability (RE > 1), derived using either the activating function (AF) or the nerve activation threshold (MRG model). Main results. Simulations revealed that a localized ‘virtual bipole’ was created on the target nerve, where the isopotential surface of the cuff resulted in large potential differences with the surrounding tissue. The cathodic part (nerve depolarization) of the bipole enhanced neural excitability, predicted by RE values of up to 2.2 (MRG) and 5.5 (AF) when compared to TENS. The MRG model confirmed that action potentials were initiated at the cathodic edge of the nerve cuff. Factors contributing to eTENS were larger surface electrodes, longer cuffs, cuff conductivity (>1×103 S m−1), and cuff position relative to the cathodic surface electrode. Significance. This study provides a theoretical basis for designing and testing eTENS applied to various neural targets and data suggesting function of eTENS in large models of nerve stimulation. Although eTENS carries key advantages over existing technologies, further work is needed to translate this approach into effective clinical applications.
Development of accurate and sensitive dental imaging technologies is a top priority in the pursuit of high-quality dental care. However, while early dental caries detection and routine monitoring of treatment progress are crucial for effective long-term results, current radiographic technologies fall short of this objective due to low sensitivity for small lesions and use of ionizing radiation which is unsuitable for frequent monitoring. Here we demonstrate the first application of enhanced Truncated Correlation-Photothermal Coherence Tomography (eTC-PCT) to dental imaging. eTC-PCT is non-invasive and non-ionizing, operates well below the maximum permissible exposure (MPE) limit, and features 3D subsurface imaging capability with operator controlled axial resolution. We explore the potential of this method for dental applications and demonstrate its capability for depth-resolved tomographic 3D reconstructions of the details and subsurface extent of a variety of dental defects. To this end, in this proof-of-concept study, dental eTC-PCT imaging results, and its sensitivity to dental caries, are discussed in comparison with visual examination, x-rays and micro-CT imaging.
We present enhanced truncated-correlation phototothermal coherence tomography (eTC-PCT) for non-invasive three-dimensional imaging of small animals. Tumor detection is reported in a mouse thigh by injecting cancerous cells in the thigh followed by eTC-PCT imaging. Detection of the tumor 3 days after injection may lead to potential for using the eTC-PCT method for cancer treatment studies. eTC-PCT was also applied successfully to non-invasive in-vivo mouse brain structural imaging. A unique spatial-gradient-gate adaptive filter was introduced in a scanned mode along the (x,y) coordinates of camera images from different sub-cranial depths, revealing absorber true spatial extent from diffusive photothermal images and restoring pre-diffusion lateral image resolution beyond the Rayleigh criterion limit in diffusion-wave imaging science. The spatial resolution and contrast enhancement demonstrated in photothermal in-vivo and ex-vivo images of the mouse brain revealed not only vascular structures but also other brain structures, such as the brain hemispheres, cerebellum, and olfactory lobes. Optical imaging provides intrinsic advantages in biological tisssue characterization through the capacity for high image contrast and resolution. However, purely optical methods are hindered by their penetration depth being effectively limited to the optical diffusion length. Recently, two-photon microscopy 1 , three-photon microscopy 2 , and optical coherence tomography 3 were utilized for in-vivo brain imaging with the depth range of ~ 1.6 mm within the cortex layer and resolution of a few micrometers. This, however, was only possible in an invasive mode, after removing the skin and removing/thinning the skull. Although the image resolution of purely optical imaging methods is very high, the invasive nature of these methods limit their application for e.g. drug testing. Recently, photoacoustic tomography (PAT) has been explored for non-invasive cancer tumor imaging 4-7 and brain imaging applications as an alternative to purely optical imaging 8-13. Through exploiting the optical-to-ultrasonic energy conversion, photoacoustic methods combine high optical contrast with the superior penetration depth of ultrasonic waves. However, the reported setups require animal models to be surrounded by a coupling medium, often water, thus limiting the potential use of PAT. They also require the use of single transducer or array scanning which complicates the instrumentation and the image acquisition process. Light absorption and nonradiative energy conversion in the sample leads to the photothermal effect, which gives rise to thermophotonic imaging, an emerging photothermal diagnostic modality. It involves the detection of photothermal waves through emitted thermal infrared (IR) photons (Planck radiation) from tissues, captured by a mid-IR (MIR) camera. Enhanced Truncated-Correlation Photothermal Coherence Tomography (eTC-PCT) 14 is a novel imaging method based on the photothermal effect, which has achieved superior penetration
Significance: Dental caries is the most common oral disease, with significant effects on healthcare systems and quality of life. Developing diagnostic methods for early caries detection is key to reducing this burden and enabling non-invasive treatment as opposed to the drill-and-fill approach.Aim: The application of a thermophotonic-based 3D imaging modality [enhanced truncated-correlation photothermal coherence tomography (eTC-PCT)] to early dental caries is investigated. To this end, the detection threshold, sensitivity, and 3D lesion reconstruction capability of eTC-PCT in imaging artificially generated caries and surface erosion are evaluated.Approach: eTC-PCT employs a diode laser with pulsed excitation, a mid-IR camera, and an inhouse developed image reconstruction algorithm to produce depth-resolved 2D images and 3D reconstructions. Starting with healthy teeth, dental caries and surface erosion are simulated in vitro through application of specific demineralizing/eroding acidic solutions.Results: eTC-PCT can detect artificial caries as early as 2 days after onset of artificial demineralization and after 45 s of surface erosion, with a laser power equivalent to 64% of maximum permissible exposure. In both cases, the lesion is not visible to the eye and undetected by x-rays. eTC-PCT is capable of monitoring lesion progression in 2-day increments and generating 3D tomographic reconstructions of the advancing lesion.Conclusions: eTC-PCT shows great potential for further development as a dental imaging modality combining low detection threshold, high sensitivity to lesion progression, 3D reconstruction capability, and lack of ionizing radiation. These features enable early diagnosis and frequent monitoring, making eTC-PCT a promising technology for facilitating preventive dentistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.