Classical vortex generators, known for their efficiency in delaying or even inhibiting boundary layer separation, are here shown to be coveted devices for transition to turbulence delay. The present devices are miniature with respect to classical vortex generators but are tremendously powerful in modulating the laminar boundary layer in the direction orthogonal to the base flow and parallel to the surface. The modulation generates an additional term in the perturbation energy equation, which counteracts the wall-normal production term and, hence, stabilizes the flow. Our experimental results show that these devices are really effective in delaying transition, but we also reveal their Achilles' heel.
Spanwise arrays of miniature vortex generators (MVGs) are used to generate energetic transient disturbance growth, which is able to modulate the boundary layer flow with steady and stable streak amplitudes up to 32 % of the free-stream velocity. This type of modulation has previously been shown to act in a stabilizing manner on modal disturbance growth described by classical instability theory. In an attempt to reproduce a more realistic flow configuration, in the present experimental setup, Tollmien-Schlichting (TS) waves are generated upstream of the MVG array, allowing for a complete interaction of the incoming wave with the array. Fifteen new MVG configurations are investigated and the stabilizing effect on the TS waves is quantified. We show that the streak amplitude definition is very important when trying to relate it to the stabilization, since it may completely bypass information on the mean streamwise velocity gradient in the spanwise direction, which is an essential ingredient of the observed stabilization. Here, we use an integral-based streak amplitude definition along with a streak amplitude scaling relation based on empiricism, which takes the spanwise periodicity of the streaks into account. The results show that, applying the integral definition, the optimal streak amplitude for attenuating TS wave disturbance growth is around 30 % of the free-stream velocity, which corresponds to ∼20 % in the conventional definition when keeping the spanwise wavelength constant. The experiments also show that the disturbance energy level, based on the full velocity signal, is significantly reduced in the controlled case, and that the onset of transition may be inhibited altogether throughout the measured region in the presence of an MVG array.
Recent experimental results on the attenuation of two-dimensional TollmienSchlichting wave (TSW) disturbances by means of passive miniature vortex generators (MVGs) have shed new light on the possibility of delaying transition to turbulence and hence accomplishing skin-friction drag reduction. A recurrent concern has been whether this passive flow control strategy would work for other types of disturbances than plane TSWs in an experimental configuration where the incoming disturbance is allowed to fully interact with the MVG array. In the present experimental investigation we show that not only TSW disturbances are attenuated, but also three-dimensional single oblique wave (SOW) and pair of oblique waves (POW) disturbances are quenched in the presence of MVGs, and that transition delay can be obtained successfully. For the SOW disturbance an unusual interaction between the wave and the MVGs occurs, leading to a split of the wave with one part travelling with a 'mirrored' phase angle with respect to the spanwise direction on one side of the MVG centreline. This gives rise to -vortices on the centreline, which force a low-speed streak on the centreline, strong enough to overcome the high-speed streak generated by the MVGs themselves. Both these streaky boundary layers seem to act stabilizing on unsteady perturbations. The challenge in a passive control method making use of a non-modal type of disturbances to attenuate modal disturbances lies in generating stable streamwise streaks which do not themselves break down to turbulence.
Miniature vortex generators (MVGs) are able to delay the transition to turbulence in a flat plate boundary layer if properly designed. Unfortunately, the natural recovery of the modulated laminar base flow in the streamwise direction is of exponential space scale and hence the passive laminar control fades away fairly rapidly. Here we show that by placing a second array of MVGs downstream of the first one it is possible to nourish the counter-rotating streamwise vortices responsible for the modulation, which results in a prolonged streamwise extent of the control. With this control strategy it is possible to delay the transition to turbulence, consecutively, by reinforcing the control effect and with the ultimate implication of obtaining a net skin-friction drag reduction of at least 65%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.