Endothelial dysfunction or activation elicited by oxidatively modified low-density lipoprotein (Ox-LDL) has been implicated in the pathogenesis of atherosclerosis, characterized by intimal thickening and lipid deposition in the arteries. Ox-LDL and its lipid constituents impair endothelial production of nitric oxide, and induce the endothelial expression of leukocyte adhesion molecules and smooth-muscle growth factors, which may be involved in atherogenesis. Vascular endothelial cells in culture and in vivo internalize and degrade Ox-LDL through a putative receptor-mediated pathway that does not involve macrophage scavenger receptors. Here we report the molecular cloning, using expression cloning strategy, of an Ox-LDL receptor from vascular endothelial cells. The cloned receptor is a membrane protein that belongs structurally to the C-type lectin family, and is expressed in vivo in vascular endothelium and vascular-rich organs.
The sustained activation of CDKN1A (p21/Waf1/Cip1) by a DNA damage response induces mitochondrial dysfunction and reactive oxygen species (ROS) production via signalling through CDKN1A-GADD45A-MAPK14- GRB2-TGFBR2-TGFbeta in senescing primary human and mouse cells in vitro and in vivo.Enhanced ROS production in senescing cells generates additional DNA damage. Although this damage is repairable and transient, it elevates the average levels of DNA damage response permanently, thus forming a positive feedback loop.This loop is necessary and sufficient to maintain the stability of growth arrest until a ‘point of no return' is reached during establishment of senescence.
The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis. We report a close correlation between hepatic fat accumulation and markers of hepatocyte senescence. The elimination of senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and quercetin (D+Q) reduces overall hepatic steatosis. Conversely, inducing hepatocyte senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent cells may be a novel therapeutic strategy to reduce steatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.