The development of low material-consuming adhesion techniques for different kinds of materials such as polymers and metals is important for the realization of sustainable societies. This study demonstrates that coating layers, expected to be formed as self-assembled monolayers, of silane coupling agents can act as adhesion layers at the polymer film-metal plate interfaces. Polyimide films were alkaline hydrolyzed to generate carboxy groups on their surfaces, whereas titanium plate surfaces were treated with the aminosilanes to form their coating layers thereon. These modified surfaces were placed in contact with each other and then hot pressed, which resulted in adhesion between them. An examination of the adhesion strength using lap shear tests and surface characterization of the prepared surfaces using X-ray photoelectron spectroscopy and other techniques indicated the formation of ionic bonds and/or amide bonds between the carboxy groups of the PI film surfaces and the amino groups immobilized on the titanium plate surfaces. The activation of the carboxy groups using N-hydroxysuccinimide resulted in adhesion obtaining a water-resistant property, which supported the increase in amide bond formation. On the basis of the results, the adhesion mechanism and the possible breaking points upon the breaking of adhesions are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.