The placenta grows rapidly for a short period with high blood flow during pregnancy and has multifaceted functions, such as its barrier function, nutritional transport, drug metabolizing activity and endocrine action. Consequently, the placenta is a highly susceptible target organ for drug- or chemical-induced adverse effects, and many placenta-toxic agents have been reported. However, histopathological examination of the placenta is not generally performed, and the placental toxicity index is only the placental weight change in rat reproductive toxicity studies. The placental cells originate from the trophectoderm of the embryo and the endometrium of the dam, proliferate and differentiate into a variety of tissues with interaction each other according to the development sequence, resulting in formation of a placenta. Therefore, drug- or chemical-induced placental lesions show various histopathological features depending on the toxicants and the exposure period, and the pathogenesis of placental toxicity is complicated. Placental weight assessment appears not to be enough to evaluate placental toxicity, and reproductive toxicity studies should pay more attention to histopathological evaluation of placental tissue. The detailed histopathological approaches to investigation of the pathogenesis of placental toxicity are considered to provide an important tool for understanding the mechanism of teratogenicity and developmental toxicity with embryo lethality, and could benefit reproductive toxicity studies.
Background The repeated-dose liver micronucleus (RDLMN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly for those that require metabolic activation to show genotoxicity. In a collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) – Mammalian Mutagenicity Study Group (MMS), micronucleus induction of 22 chemicals with the RDLMN assay employing the collagenase digestion method was examined and reported on. Recently, we have developed a method which enables retrospective evaluation of micronucleus induction in formalin-fixed liver tissues (the formalin-fixed method) obtained in general toxicity studies completed in the past. Using this method, we were able to easily evaluate clastogenic potential of chemicals from the formalin-fixed tissues obtained in the general toxicity studies. In this study, to evaluate the usefulness of the formalin-fixed method, we have conducted a liver micronucleus assay using the formalin-fixed liver samples obtained from the above collaborative study (18 of 22 test chemicals) and carried out a comparison with the results obtained by the collagenase digestion method. Results Comparison of the collagenase digestion and formalin-fixed methods was conducted using the results of the micronucleus assays with a total of 18 test chemicals which included 12 genotoxic hepatocarcinogens (Group A), 4 genotoxic carcinogens but not liver targeted (Group B), and 2 nongenotoxic hepatocarcinogens (Group C). The formalin-fixed method obtained the similar results as the collagenase digestion method in 10 out of the 12 chemicals of Group A, and all chemicals of Group B and Group C. Although the results were statistically contradictive due to different levels of concurrent negative control, the 2 other chemicals of Group A showed comparable responses between the two methods. Conclusion The present study shows that the formalin-fixed method is capable of detecting liver carcinogens with sensitivity equal to or higher than that of the collagenase digestion method. We recommend use of the formalin-fixed method because of its capability of enabling retrospective evaluation of micronucleus induction in the formalin-fixed liver tissues obtained in general toxicity studies completed in the past.
3,6-Dinitrobenzo[e]pyrene (3,6-DNBeP), newly identified in airborne particles and surface soil, is a potent mutagen in Salmonella typhimurium. The present study investigated the genotoxic potency of 3,6-DNBeP in vitro and in vivo using mammalian cell strains (Chinese hamster CHL/IU and human HepG2) and ICR mice, respectively. In the hprt gene mutation assay using HepG2 cells, the spontaneous mutant frequency was 61.1 per 10(5) clonable cells, which increased to 229 per 10(5) clonable cells after treatment with 1.0 microg/ml (3 microM) 3,6-DNBeP. Notably, in HepG2 cells with increased N-acetyltransferase 2 activity, the mutant frequency increased to 648 per 10(5) clonable cells by treatment of 1.0 microg/ml (3 microM) 3,6-DNBeP. The sister chromatid exchange frequency increased approximately three times the control level in HepG2 cells treated with 3,6-DNBeP at a concentration of 1.0 microg/ml (3 microM). In HepG2 and CHL/IU cells, the frequency of the cells with micronuclei was 0.9 and 1.2%, and the frequencies increased to 2.3 and 7.6% after 1.0 microg/ml (3 microM) 3,6-DNBeP-treatment, respectively. The H2AX phosphorylation level increased 8-fold compared with the background level with 1.0 microg/ml (3 microM) 3,6-DNBeP-treatment in HepG2 cells. Moreover, the comet assay showed that 3,6-DNBeP produced DNA damage in the cells of liver, kidney, lung and bone marrow in ICR mice 3 h after intraperitoneal injection at 40 mg/kg (0.12 mmol/kg) body weight. These data indicate that 3,6-DNBeP is genotoxic to mammalian cells in vitro and in vivo.
-Recently, the liver micronucleus (MN) assay using young adult rats with repeated administrations has been investigated by employing a new method without partial hepatectomy or in situ collagenase perfusion as the repeated dose liver MN (RDLMN) assay by Narumi et al in order to investigate the possibility of the RDLMN assay using young adult mice instead of rats and the feasibility of employing some genotoxicity assays along with the RDLMN assay as a combination test, two genotoxic carcinogens (N,N -assay, peripheral blood (PB) MN assay and comet assay using the liver and kidney were concurrently performed as a combination test. DEN showed positive responses to all endpoints except MN induction in comet assay yielded negative responses for both organs at both sampling times. PHE yielded negative -ble method to be integrated into the general repeated toxicity test along with the combination assays, i.e., comet assay or PB MN assay, which would help in risk assessment for carcinogenicity by comparing the results of combination assays with each other.
Background Acrylamide (AA) is a rodent carcinogen and classified by the IARC into Group 2A (probable human carcinogen). AA has been reported to induce mutations in transgenic rodent gene mutation assays (TGR assays), the extent of which is presumed to depend on exposure length and the duration of expression after exposure. In particular, it is not clear in germ cells. To investigate mutagenicity with AA in somatic and germ cells at different sampling times, we conducted TGR assays using gpt delta transgenic mice. Results The male gpt delta mice at 8 weeks of age were treated with AA at 7.5, 15 and 30 mg/kg/day by gavage for 28 days. Peripheral blood was sampled on the last day of the treatment for micronucleus tests and tissues were sampled for gene mutation assays at day 31 and day 77, those being 3 and 49 days after the final treatment (28 + 3d and 28 + 49d), respectively. Another group of mice was treated with N-Ethyl-N-nitrosourea (ENU) at 50 mg/kg/day by intraperitoneal administration for 5 consecutive days and tissues were sampled at the day 31 and day 77 (5 + 26d and 5 + 72d). Frequencies of micronucleated erythrocytes in the peripheral blood significantly increased at AA doses of 15 and 30 mg/kg/day. Two- to three-fold increases in gpt mutation frequencies (MFs) compared to vehicle control were observed in the testes and lung treated with 30 mg/kg/day of AA at both sampling time. In the sperm, the gpt MFs and G:C to T:A transversions were significantly increased at 28 + 3d, but not at 28 + 49d. ENU induced gpt mutations in these tissues were examined at both 5 + 26d and 5 + 72d. A higher mutant frequency in the ENU-treated sperm was observed at 5 + 72d than that at 5 + 26d. Conclusions The gpt MFs in the testes, sperm and lung of the AA-treated mice were determined and compared between different sampling times (3 days or 49 days following 28 day-treatment). These results suggest that spermatogonial stem cells are less sensitive to AA mutagenicity under the experimental condition. Prolonged expression time after exposure to AA to detect mutagenicity may be effective in somatic cells but not in germ cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.