Background:Intact expression of podocyte histone deacetylases (HDAC) during development is essential for maintaining a normal glomerular filtration barrier due to its role in modulating DNA damage and preventing premature senescence.Methods:Germline podocyte-specificHdac1and2(Hdac1/2) double knockout mice were generated to examine the importance of these enzymes during development.Results:Podocyte-specific loss ofHdac1/2in mice resulted in severe proteinuria, kidney failure, and collapsing glomerulopathy.Hdac1/2-deprived podocytes exhibited classic characteristics of senescence, such as senescence-associated β-galactosidase activity and lipofuscin aggregates. In addition, DNA damage, likely caused by epigenetic alterations such as open chromatin conformation, not only resulted in podocyte cell-cycle entry as shownin vivoby Ki67 expression and by FUCCI-2aR mice, but also in p21-mediated cell-cycle arrest. Through the senescence secretory associated phenotype, the damaged podocytes secreted proinflammatory cytokines, growth factors, and matrix metalloproteinases, resulting in subsequent podocyte detachment and loss, evidenced by senescent podocytes in urine.Conclusions:Hdac1/2play an essential role during development. Loss of these genes in double knockout mice leads to sustained DNA damage and podocyte senescence and loss.
We apply a simple Brownian ratchet model to an artificial molecular rotary system mounted in a biological membrane, in which the rotor always maintains unidirectional rotation in response to a linearly polarized weak ac field. Because the rotor and stator compose a ratchet system, we describe the motion of the rotor tip with the Langevin equation for a particle in a two-dimensional three-tooth ratchet potential of threefold symmetry. Unidirectional rotation can be induced under the field and optimized by stochastic resonance, wherein the mean angular momentum (MAM) of the rotor exhibits a bell-shaped curve for the noise strength. We obtain analytical expressions for the MAM and power loss from the corresponding Fokker-Planck equation, via a Markov transition model for coarse-grained states (six-state model). The MAM expression reveals a significant effect depending on the chirality of the ratchet potential: in achiral cases, the MAM approximately vanishes with respect to the polarization angle φ of the field; in chiral cases, the MAM does not crucially depend on φ, but depends on the direction of the ratchet; i.e., the parity of the unidirectional rotation is inherent in the ratchet structure. This feature is useful for artificial rotary systems to maintain robust unidirectional rotation independent of the mounting condition.
Toll-like receptor 9 (TLR9), which is activated by endogenously released mtDNA during sepsis, contributes to the development of polymicrobial septic acute kidney injury (AKI). However, downstream factors of TLR9 to AKI remain unknown. We hypothesized that IL-17A activated by TLR9 may play a critical role in septic AKI development. To determine the effects of TLR9 on IL-17A production in septic AKI, we used a cecal ligation and puncture (CLP) model in Tlr9 knockout ( Tlr9KO) mice and wild-type (WT) littermates. We also investigated the pathway from TLR9 activation in dendritic cells (DCs) to IL-17A production by γδT cells in vitro. To elucidate the effects of IL-17A on septic AKI, Il-17a knockout ( Il-17aKO) mice and WT littermates were subjected to CLP. We further investigated the relationship between the TLR9-IL-17A axis and septic AKI by intravenously administering recombinant IL-17A or vehicle into Tlr9KO mice and assessing kidney function. IL-17A levels in both plasma and the peritoneal cavity and mRNA levels of IL-23 in the spleen were significantly higher in WT mice after CLP than in Tlr9KO mice. Bone marrow-derived DCs activated by TLR9 induced IL-23 and consequently promoted IL-17A production in γδT cells in vitro. Knockout of Il-17a improved survival, functional and morphological aspects of AKI, and splenic apoptosis after CLP. Exogenous IL-17A administration aggravated CLP-induced AKI attenuated by knockout of Tlr9. TLR9 in DCs mediated IL-17A production in γδT cells during sepsis and contributed to the development of septic AKI.
Acute kidney injury (AKI) contributes to development of acute lung injury (ALI) via proinflammatory responses. We hypothesized that activation of a nicotinic acetylcholine receptor (nAChR), which exerts cholinergic anti-inflammatory effects on macrophages, could reduce ALI after AKI. We aimed to determine: 1) whether nAChR agonists could reduce ALI after AKI and 2) which macrophages in the lung or spleen contribute to the improvement of ALI by nAChR agonists. We induced AKI in C57BL/6 male mice by unilateral ischemia-reperfusion injury (IRI) with contralateral nephrectomy and administered nAChR agonists in three experimental settings: 1) splenectomy, 2) splenic macrophage deletion via intravenous administration of clodronate liposomes, and 3) alveolar macrophage deletion via intratracheal administration of clodronate liposomes. Treatment with GTS-21, anα7nAChR selective agonist, significantly reduced the levels of circulating IL-6, a key proinflammatory cytokine and lung CXCL1 and CXCL2 and neutrophil infiltration and Evans blue dye vascular leakage increased after renal IRI. In splenectomized mice, GTS-21 did not reduce circulating IL-6 and lung CXCL1 and CXCL2levels and neutrophil infiltration, and Evans blue dye vascular leakage increased after renal IRI. In mice depleted of splenic macrophages, GTS-21 treatment did not reduce lung neutrophil infiltration, and Evans blue dye vascular leakage increased after renal IRI. In mice depleted of alveolar macrophages, GTS-21 treatment significantly reduced lung neutrophil infiltration, and Evans blue dye vascular leakage increased after renal IRI. Our findings show that nAChR agonist reduces circulating IL-6 levels and acute lung injury after renal IRI by acting on splenic macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.