Stress responses of Bacillus subtilis to membrane-active cationic antimicrobial peptides were studied. Global analysis of gene expression by DNA macroarray showed that peptides at a subinhibitory concentration activated numerous genes. A prominent pattern was the activation of two extracytoplasmic function sigma factor regulons, SigW and SigM. Two natural antimicrobial peptides, LL-37 and PG-1, were weak activators of SigW regulon genes, whereas their synthetic analogue poly-L-lysine was clearly a stronger activator of SigW. It was demonstrated for the first time that LL-37 is a strong and specific activator of the YxdJK two-component systems, one of the three highly homologous two-component systems sensing antimicrobial compounds. YxdJK regulates the expression of the YxdLM ABC transporter. The LiaRS (YvqCE) TCS was also strongly activated by LL-37, but its activation is not LL-37 specific, as was demonstrated by its activation with PG-1 and Triton X-100. Other strongly LL-37-induced genes included yrhH and yhcGHI. Taken together, the responses to cationic antimicrobial peptides revealed highly complex regulatory patterns and induction of several signal transduction pathways. The results suggest significant overlap between different stress regulons and interdependence of signal transduction pathways mediating stress responses.
SummaryWe have identified and characterized the lgt gene of Bacillus subtilis. The prelipoprotein diacylglycerol transferase enzyme (Lgt) catalyses the first reaction in lipomodification of bacterial lipoproteins. Inactivation of lgt in B. subtilis by a nonsense mutation (prs-11 mutation) or by disruption was shown here to abolish lipomodification of prelipoproteins completely, as well as the cleavage of signal peptide. However, unlike in Gram-negative bacteria, the lgt mutants of B. subtilis were fully viable. In agreement with this observation, studies of two lipoproteins, PrsA and BlaP, indicated that non-lipomodified precursors of these proteins were functional and translocated across the cytoplasmic membrane. However, there was release of both precursors from cells, resulting in a reduced level of the cell-bound form. We have shown that the reduced level of the PrsA lipoprotein, a foldase involved in protein secretion, caused impaired protein secretion, a prominent phenotype of lgt mutants. There was no indication that non-lipomodified PrsA displayed reduced activity.
Summaryecs is a three-cistron operon of Bacillus subtilis, encoding proteins with similarity to the ATPase (EcsA) and hydrophobic components (EcsB) of ABC transporters. The ecsA26 point mutation was shown to cause a strong processing defect of a secreted ␣-amylase precursor (preAmyQ) and of three other exoproteins. Northern analysis of the level of amyQ mRNA showed that ecsA26 also decreases amyQ transcription. This effect too was pleiotropic, as judged by a drastic decrease in the expression from an exoprotease promoter of a reporter protein. A knockout mutation of the ecsB cistron caused a processing defect similar to ecsA26 but, unlike ecsA26, did not affect amyQ transcription. There was also no defect in transcription in the ecsA ecsB double mutant. Thus, an intact ecsB product was required for the downregulation of amyQ by the mutant ecsA. These results suggest a dual regulatory function for Ecs, in which Ecs, possibly as part of a signal transduction mechanism, regulates some component(s) of the protein secretion apparatus as well as secretory protein transcription in a co-ordinated fashion.
The levels of exoamylase and other exoenzymes of Bacillus subtilis are pleiotropically decreased by the ecs-26 (PIS-26) and ecs-13 (prs-13) mutations. These mutations also cause a competence-and sporulation-def icient phenotype. In the present work, the ecs locus, which has been defined by the ecs-26 and ecs-13 mutations, was cloned and sequenced. Sequence analysis revealed a putative operon of three ORFs (ecsA, ecsB and ecsC). ecsA can encode a putative polypeptide of 248 amino acid residues containing an ATPbinding site. The polypeptide shows about 30% sequence similarity with the ATP-binding components of numerous membrane transporters of the ABC-type (ATP-binding cassette transporters or traffic ATPases). The ecs-26 mutation was found to result from a transition of one base pair changing the glycine,, of EcsA to a glutamic acid residue in the vicinity of the putative ATP-binding pocket. ecsB was predicted to encode a hydrophobic protein with six membrane-spanning helices in a pattern found in other hydrophobic components of ABC transporters. The properties deduced for the ecsA and ecsB gene products are consistent with the interpretation that ecs encodes a novel ABC-type membrane transporter of B. subtilis. The third ORF, ecsC, can encode a putative polypeptide of 237 amino acid residues. The polypeptide does not resemble components of ABC transporters.
Identification and characterization of a suppressor mutation, sup-15, which partially restored secretion in the protein secretion-deficient Bacillus subtilis ecsA26 mutant, led us to discover a novel function of Clp protease. Inactivation of ClpP improved the processing of the precursor of AmyQ ␣-amylase exposed on the outer surface of the cytoplasmic membrane. A similar improvement of AmyQ secretion was conferred by inactivation of the ClpX substrate-binding component of the ClpXP complex. In the absence of ClpXP, the transcription of the sipS, sipT, sipV, and lsp signal peptidase genes was elevated two-to fivefold, a likely cause of the improvement of the processing and secretion of AmyQ and complementation of ecs mutations. Specific overproduction of SipT enhanced the secretion. These findings extend the regulatory roles of ClpXP to protein secretion. ClpXP also influenced the processing of the lipoprotein PrsA. A concerted regulation of signal peptidase genes by a ClpXP-dependent activator is suggested. In contrast, Ecs did not affect transcription of the sip genes, pointing to a different mechanism of secretion regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.