Abstract. We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many bounds characterizations in econometrics, for instance bounds on parameters under conditional moment inequalities, can be formulated as intersection bounds. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are nonseparable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a median-bias-corrected estimator of such bounds as a by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of "penultimate" Gaussian processes. These penultimate processes are generally not weakly convergent, and thus non-Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes.Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest.
Summary. We consider a high dimensional regression model with a possible change point due to a covariate threshold and develop the lasso estimator of regression coefficients as well as the threshold parameter. Our lasso estimator not only selects covariates but also selects a model between linear and threshold regression models. Under a sparsity assumption, we derive non-asymptotic oracle inequalities for both the prediction risk and the l 1 -estimation loss for regression coefficients. Since the lasso estimator selects variables simultaneously, we show that oracle inequalities can be established without pretesting the existence of the threshold effect. Furthermore, we establish conditions under which the estimation error of the unknown threshold parameter can be bounded by a factor that is nearly n 1 even when the number of regressors can be much larger than the sample size n. We illustrate the usefulness of our proposed estimation method via Monte Carlo simulations and an application to real data.
This paper considers a linear triangular simultaneous equations model with conditional quantile restrictions. The paper adjusts for endogeneity by adopting a control function approach and presents a simple two-step estimator that exploits the partially linear structure of the model. The first step consists of estimation of the residuals of the reduced-form equation for the endogenous explanatory variable. The second step is series estimation of the primary equation with the reduced-form residual included nonparametrically as an additional explanatory variable. This paper imposes no functional form restrictions on the stochastic relationship between the reduced-form residual and the disturbance term in the primary equation conditional on observable explanatory variables. The paper presents regularity conditions for consistency and asymptotic normality of the two-step estimator. In addition, the paper provides some discussions on related estimation methods in the literature and on possible extensions and limitations of the estimation approach. Finally, the numerical performance and usefulness of the estimator are illustrated by the results of Monte Carlo experiments and two empirical examples, demand for fish and returns to schooling.Key words: Endogeneity, partially linear regression, quantile regression, series estimation. * I would like to thank David Blau, Richard Blundell, Pedro Carneiro, Andrew Chesher, Joel Horowitz, Hide Ichimura, Francis Kramarz, Roger Koenker, and seminar participants at CREST for helpful comments. Special thanks go to Andrew Chesher for encouraging me to work on this and other related quantile regression projects. I am also grateful to Kathryn Graddy for kindly providing me with her data on demand for fish.
This paper extends the method of local instrumental variables developed by Heckman and Vytlacil (1999, 2005 to the estimation of not only means, but also distributions of potential outcomes. The newly developed method is illustrated by applying it to changes in college enrollment and wage inequality using data from the National Longitudinal Survey of Youth of 1979. Increases in college enrollment cause changes in the distribution of ability among college and high school graduates. This paper estimates a semiparametric selection model of schooling and wages to show that, for fixed skill prices, a 14% increase in college participation (analogous to the increase observed in the 1980s), reduces the college premium by 12% and increases the 90-10 percentile ratio among college graduates by 2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.