Spurred by a growing demand for higher-quality mobile services in vertical industries, 5G is integrating a rich set of technologies, traditionally alien to the telco ecosystem, such as machine learning or cloud computing. Despite the initial steps taken in prior research projects in Europe and beyond, additional innovations are needed to support vertical use cases. This is the objective of the 5Growth project: automate vertical support through (i) a portal connecting verticals to 5G platforms (a.k.a. vertical slicer), (ii) closed-loop machine-learning based Service Level Agreement (SLA) control, and (iii) end-to-end optimization. In this paper, we introduce a set of key 5Growth innovations supporting radio slicing, enhanced monitoring and analytics and integration of machine learning.
The provision of very high capacity is one of the big challenges of the 5G cellular technology. This challenge will not be met using traditional approaches like increasing spectral efficiency and bandwidth, as witnessed in previous technology generations. Cell densification will play a major role thanks to its ability to increase the spatial reuse of the available resources. However, this solution is accompanied by some additional management challenges. In this article, we analyze and present the most promising solutions identified in the METIS project for the most relevant network layer challenges of cell densification: resource, interference and mobility management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.