Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signaling pathways. The effects of plant hormones can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. In this study, rice plants growing in normal and saline soils were exposed to abscisic acid (ABA), the safener cyprosulfamide or both compounds together. We found that cyprosulfamide, either alone or in combination with ABA, protected the plants from salinity stress and induced vigorous growth, including the formation of new tillers and early flowering. Proteomic analysis identified several proteins that were induced by stress and/or the chemical treatments, including the late embryogenesis abundant protein OsLEA3, a putative mitochondrial translocase and a putative fumarylacetoacetate hydrolase. The corresponding gene s were induced by stress and/or the individual chemical treatments, but expression dropped back when the stress was removed. However, the combination of ABA and cyprosulfamide prolonged the expression of all three genes beyond the stress period, and allowed the plants to maintain their enhanced growth characteristics. These data support a model involving cooperation between the cyprosulfamide and ABA signaling pathways. Accordingly, it was found that cyprosulfamide induces ABA synthesis more robustly than salinity stress, allowing the two regulators to converge on certain downstream target genes. We discuss the impact of our results on current models for the hormonal regulation of stress response pathways in rice and other plants
Objectives This aim of this study was to characterize the composition and content of the feline urine metabolome. Methods Eight healthy domestic cats were acclimated at least 10 days before starting the study. Urine samples (~2 ml) were collected by ultrasound-guided cystocentesis. Samples were centrifuged at 1000 × g for 8 mins, and the supernatant was analyzed by gas chromatography/time-of-flight mass spectrometery. The urine metabolome was characterized using an untargeted metabolomics approach. Results Three hundred and eighteen metabolites were detected in the urine of the eight cats. These molecules are key components of at least 100 metabolic pathways. Feline urine appears to be dominated by carbohydrates, carbohydrate conjugates, organic acid and derivatives, and amino acids and analogs. The five most abundant molecules were phenaceturic acid, hippuric acid, pseudouridine phosphate and 3-(4-hydroxyphenyl) propionic acid. Conclusions and relevance This study is the first to characterize the feline urine metabolome. The results of this study revealed the presence of multiple low-molecular-weight substances that were not known to be present in feline urine. As expected, the origin of the metabolites detected in urine was diverse, including endogenous compounds and molecules biosynthesized by microbes. Also, the diet seemed to have had a relevant role on the urine metabolome. Further exploration of the urine metabolic phenotype will open a window for discovering unknown, or poorly understood, metabolic pathways. In turn, this will advance our understanding of feline biology and lead to new insights in feline physiology, nutrition and medicine.
In recent years there has been considerable interest in carotenoids with respect to their biological roles in animals, microorganisms, and plants, in addition to their use in the chemical, cosmetics, food, pharmaceutical, poultry, and other industries. However, the structural diversity, the different range of concentration, and the presence of cis/trans-isomers complicate the identification of carotenoids. This review provides updated information on their physical and chemical properties as well as spectroscopic and chromatographic data for the unambiguous determination of carotenoids in biological samples.
Mycophenolic acid (MPA) has been shown to be promising for the treatment of autoimmune diseases in dogs and cats. In humans, MPA is highly bound to plasma proteins (~97%). It has been recommended to monitor free drug plasma concentrations because the free MPA correlates with its immunosuppressive effect. However, it is unknown if MPA is highly bound to plasma proteins in dogs and cats. The objectives of this study were to determine the extent of plasma protein binding of MPA and evaluate the effect of prednisolone and dexamethasone on the extent of protein binding of MPA in dogs and cats. The extent of plasma protein binding of MPA was determined in plasma collected from clinically healthy adult cats (n = 13) and dogs (n = 14) by combining high-throughput dialysis and ultra-high-liquid chromatography. This study reveals that MPA is highly bound to plasma proteins (>90%) in dogs and cats, mean extent of binding of MPA at 15 μg/ml to plasma proteins being 96% (range, 95%-97%) and 92% (range, 90%-93%) for dogs and cats, respectively. In dog plasma, MPA is primarily bound to albumin. In vitro, prednisolone increased the unbound MPA in dogs (p < .01) but not in cats (p = .07) while dexamethasone had no effect on MPA plasma binding in either species (p > .05). Results of this study provide valuable information for designing future pharmacokinetic and pharmacodynamic studies and also therapeutic monitoring programs for dogs and cats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.