There has been a strong demand for oat genotypes that contain caryopsis with high chemical quality which can suit the different market niches. Therefore, the objectives of this study were to assess the general (GCA) and specific combining ability (SCA) of white oat cultivars through diallelic crosses providing information about the genetic effects on expression of grain chemical quality components.
Abiotic stresses such as salinity, iron toxicity, and low temperatures are the main limiting factors of rice (Oryza sativa L.) yield. The elucidation of the genes involved in responses to these stresses is extremely important to understand the mechanisms that confer tolerance, as well as for the development of cultivars adapted to these conditions. In this study, the RNA-seq technique was used to compare the transcriptional profile of rice leaves (cv. BRS Querência) in stage V3, exposed to cold, iron, and salt stresses for 24 h. A range of 41 to 51 million reads was aligned, in which a total range of 88.47 to 89.21 % was mapped in the reference genome. For cold stress, 7905 differentially expressed genes (DEGs) were observed, 2092 for salt and 681 for iron stress; 370 of these were common to the three DEG stresses. Functional annotation by software MapMan demonstrated that cold stress usually promoted the greatest changes in the overall metabolism, and an enrichment analysis of overrepresented gene ontology (GO) terms showed that most of them are contained in plastids, ribosome, and chloroplasts. Saline stress induced a more complex interaction network of upregulated overrepresented GO terms with a relatively low number of genes compared with cold stress. Our study demonstrated a high number of differentially expressed genes under cold stress and a greater relationship between salt and iron stress levels. The physiological process most affected at the molecular level by the three stresses seems to be photosynthesis.
AbstrAct:The increase of yield potential in new rice (Oryza sativa L.) varieties has been a major challenge for genetic improvement.The generation of mutants, followed by their characterization, constitutes a great possibility to isolate and select genes and genotypes that present agronomic traits of interest. This study significance. The results show that there is genetic variability among the mutant families, suggesting that the mutagen EMS at 1.5% is effective for generating mutants for all assessed traits. Among the characters, plant height was the most affected by the mutagen, which provided an increase in the character. For the main panicle length character, seven families showed means above the control; for main panicle weight and grain weight, four and six mutant families were observed, respectively, with a superior performance in comparison to the control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.