Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of residues are generated in the coffee industry, which are toxic and represent serious environmental problems. Coffee silverskin and spent coffee grounds are the main coffee industry residues, obtained during the beans roasting, and the process to prepare "instant coffee", respectively. Recently, some attempts have been made to use these residues for energy or value-added compounds production, as strategies to reduce their toxicity levels, while adding value to them. The present article provides an overview regarding coffee and its main industrial residues. In a first part, the composition of beans and their processing, as well as data about the coffee world production and exportation, are presented. In the sequence, the characteristics, chemical composition, and application of the main coffee industry residues are reviewed. Based on these data, it was concluded that coffee may be considered as one of the most valuable primary products in world trade, crucial to the economies and politics of many developing countries since its cultivation, processing, trading, transportation, and marketing provide employment for millions of people. As a consequence of this big market, the reuse of the main coffee industry residues is of large importance from environmental and economical viewpoints.
Spent coffee grounds (SCG) and coffee silverskin (CS) represent a great pollution hazard if discharged into the environment. Taking this fact into account, the purpose of this study was to evaluate the chemical composition, functional properties, and structural characteristics of these agroindustrial residues in order to identify the characteristics that allow their reutilization in industrial processes. According to the results, SCG and CS are both of lignocellulosic nature. Sugars polymerized to their cellulose and hemicellulose fractions correspond to 51.5 and 40.45 % w/w, respectively; however, the hemicellulose sugars and their composition significantly differ from one residue to another. SCG and CS particles differ in terms of morphology and crystallinity, but both materials have very low porosity and similar melting point. In terms of functional properties, SCG and CS present good water and oil holding capacities, emulsion activity and stability, and antioxidant potential, being therefore great candidates for use on food and pharmaceutical fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.