Purpose
Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM.
Experimental Design
In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model.
Results
HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo.
Conclusions
These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM.
Uveal melanoma is the most common primary cancer of the eye, and often results not only in vision loss, but also in metastatic death in up to half of patients. For many years, the details of the molecular pathogenesis of uveal melanoma remained elusive. In the past decade, however, many of these details have emerged to reveal a fascinating and complex story of how the primary tumor evolves and progresses. Early events that disrupt cell cycle and apoptotic control lead to malignant transformation and proliferation of uveal melanocytes. Later, the growing tumor encounters a critical bifurcation point, where it progresses along one of two genetic pathways with very distinct genetic signatures (monosomy 3 vs 6p gain) and metastatic propensity. Late genetic events are characterized by increasing aneuploidy, most of which is nonspecific. However, specific chromosomal alterations, such as loss of chromosome 8p, can hasten the onset of metastasis in susceptible tumors. Taken together, this pathogenetic scheme can be used to construct a molecularly based and prognostically relevant classification of uveal melanomas that can be used clinically for personalized patient management.
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Together, these findings demonstrate that the short-term UM primary cultures exhibit molecular features that resemble the respective surgical material and, thus, represent the best model for in vitro-assessed cancer treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.