Adaptive immune response has been implicated in inflammation and fibrosis as a result of exposure to mineralocorticoids and a high-salt diet. We hypothesized that in mineralocorticoid-salt–induced hypertension, activation of the mineralocorticoid receptor alters the T-helper 17 lymphocyte (Th17)/regulatory T-lymphocyte/interleukin-17 (IL-17) pathway, contributing to cardiac and renal damage. We studied the inflammatory response and tissue damage in rats treated with deoxycorticosterone acetate and high-salt diet (DOCA–salt), with or without mineralocorticoid receptor inhibition by spironolactone. To determine whether Th17 differentiation in DOCA–salt rats is caused by hypertension per se, DOCA–salt rats received antihypertensive therapy. In addition, to evaluate the pathogenic role of IL-17 in hypertension and tissue damage, we studied the effect of IL-17 blockade with a specific antibody (anti–IL-17). We found activation of Th17 cells and downregulation of forkhead box P3 mRNA in peripheral tissues, heart, and kidneys of DOCA–salt–treated rats. Spironolactone treatment prevented Th17 cell activation and increased numbers of forkhead box P3–positive cells relative to DOCA–salt rats. Antihypertensive therapy did not ameliorate Th17 activation in rats. Treatment of DOCA–salt rats with anti–IL-17 significantly reduced arterial hypertension as well as expression of profibrotic and proinflammatory mediators and collagen deposits in the heart and kidney. We conclude that mineralocorticoid receptor activation alters the Th17/regulatory T-lymphocyte/IL-17 pathway in mineralocorticoid-dependent hypertension as part of an inflammatory mechanism contributing to fibrosis.
In vivo T(3) administration leads to a rapid and transient cytosol-to-nuclear translocation of liver Nrf2. This appears to be promoted by a redox-dependent mechanism as it is blocked by NAC. It may also be contributed by concomitant p38 activation, which in turn promoted Nrf2 phosphorylation. Nrf2 cytosol-to-nuclear translocation may represent a novel cytoprotective mechanism of T(3) to limit free radical or electrophile toxicity, as this would likely entail promoting thioredoxin production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.