Wearable electronic devices have attracted significant attention as important components in several applications. Among various wearable electronic devices, interest in textile electronic devices is increasing because of their high deformability and portability in daily life. To develop textile electronic devices, fiber-based electronic devices should be fundamentally studied. Here, we report a stretchable and sensitive fiber strain sensor fabricated using only harmless materials during an in situ formation process. Despite using a mild and harmless reducing agent instead of typical strong and hazardous reducing agents, the developed fiber strain sensors feature a low initial electrical resistance of 0.9 Ω/cm, a wide strain sensing range (220%), high sensitivity (∼5.8 × 10 4 ), negligible hysteresis, and high stability against repeated stretching−releasing deformation (5000 cycles). By applying the fiber sensors to various textiles, we demonstrate that the smart textile system can monitor various gestures in real-time and help users maintain accurate posture during exercise. These results will provide meaningful insights into the development of next-generation wearable applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.