bIn this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ϳ45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species. Bacteriophages have an enormous impact on the ecology and evolution of bacteria (1-3). It is well-known that bacteriophages are agents of gene mobilization across bacterial populations and that the majority of bacterial genomes harbor prophages as well as individual genes of phage origin (4-6). Conversely, temperate phages often carry bacterial genes as a result of prophage induction and recombination (7,8). Some reports indicate that phages exist for almost every known bacterial species (9). In the case of symbiotic nitrogen-fixing bacteria, such as Sinorhizobium meliloti (10, 11), Rhizobium leguminosarum (12-14), Mesorhizobium spp. (15), and Bradyrhizobium spp. (16), phages have been isolated and characterized, but no genome sequences have been reported. As a consequence, genomic comparisons have not been made. To date, only the complete genome sequence of phage 16-3 of S. meliloti has been determined (17).Lytic and temperate phages that infect rhizobial species have been isolated from soils and from lysogens induced after UV light treatment or mitomycin C exposure (11). The presence of phageresistant and -sensitive strains of Rhizobium suggests that phages play a substantial role in the selection or elimination of certain genotypes (11,(18)(19)(20). For instance, bacteriophages reduce the population density of susceptible strains of Rhizobium trifolii on the root surface, allowing resistant strains to form nodules (21,22). In field experiments, the persistence of genetically modified rhizobia has been explained in part by their resistance to phages (19).In the completely sequenced genomes of Rhizobium etli strains CFN42 and CIAT652 (23, 24), there are some open reading frames (ORFs) with relatively high degrees of identity to bacteriophage genes, such as DNA integrases, DNA transferases, lysozymes, and the small and large subunits of DNA terminase. In this work, we obtained a collection of 14 R. etli ...
Cultivated common beans are the primary protein source for millions of people around the world who subsist on low-input agriculture, enabled by the symbiotic N2 -fixation these legumes perform in association with rhizobia. Within a single agricultural plot, multiple Rhizobium species can nodulate bean roots, but it is unclear how genetically isolated these species remain in sympatry. To better understand this issue, we sequenced and compared the genomes of 33 strains isolated from the rhizosphere and root nodules of a particular bean variety grown in the same agricultural plot. We found that the Rhizobium species we observed coexist with low genetic recombination across their core genomes. Accessory plasmids thought to be necessary for the saprophytic lifestyle in soil show similar levels of genetic isolation, but with higher rates of recombination than the chromosomes. However, the symbiotic plasmids are extremely similar, with high rates of recombination and do not appear to have co-evolved with the chromosome or accessory plasmids. Therefore, while Rhizobium species are genetically isolated units within the microbial community, a common symbiotic plasmid allows all Rhizobium species to engage in symbiosis with the same host in a single agricultural plot.
Bacteriophages play significant roles in the composition, diversity, and evolution of bacterial communities. Despite their importance, it remains unclear how phage diversity and phage-host interactions are spatially structured. Local adaptation may play a key role. Nitrogen-fixing symbiotic bacteria, known as rhizobia, have been shown to locally adapt to domesticated common bean at its Mesoamerican and Andean sites of origin. This may affect phage-rhizobium interactions. However, knowledge about the diversity and coevolution of phages with their respective Rhizobium populations is lacking. Here, through the study of four phage-Rhizobium communities in Mexico and Argentina, we show that both phage and host diversity is spatially structured. Cross-infection experiments demonstrated that phage infection rates were higher overall in sympatric rhizobia than in allopatric rhizobia except for one Argentinean community, indicating phage local adaptation and host maladaptation. Phage-host interactions were shaped by the genetic identity and geographic origin of both the phage and the host. The phages ranged from specialists to generalists, revealing a nested network of interactions. Our results suggest a key role of local adaptation to resident host bacterial communities in shaping the phage genetic and phenotypic composition, following a similar spatial pattern of diversity and coevolution to that in the host.
The bacterial genus Rhizobium comprises diverse symbiotic nitrogen-fixing species associated with the roots of plants in the Leguminosae family. Multiple genomic clusters defined by whole genome comparisons occur within Rhizobium , but their equivalence to species is controversial. In this study we investigated such genomic clusters to ascertain their significance in a species phylogeny context. Phylogenomic inferences based on complete sets of ribosomal proteins and stringent core genome markers revealed the main lineages of Rhizobium . The clades corresponding to R. etli and R. leguminosarum species show several genomic clusters with average genomic nucleotide identities (ANI > 95%), and a continuum of divergent strains, respectively. They were found to be inversely correlated with the genetic distance estimated from concatenated ribosomal proteins. We uncovered evidence of a Rhizobium pangenome that was greatly expanded, both in its chromosomes and plasmids. Despite the variability of extra-chromosomal elements, our genomic comparisons revealed only a few chromid and plasmid families. The presence/absence profile of genes in the complete Rhizobium genomes agreed with the phylogenomic pattern of species divergence. Symbiotic genes were distributed according to the principal phylogenomic Rhizobium clades but did not resolve genome clusters within the clades. We distinguished some types of symbiotic plasmids within Rhizobium that displayed different rates of synonymous nucleotide substitutions in comparison to chromosomal genes. Symbiotic plasmids may have been repeatedly transferred horizontally between strains and species, in the process displacing and substituting pre-existing symbiotic plasmids. In summary, the results indicate that Rhizobium genomic clusters, as defined by whole genomic identities, might be part of a continuous process of evolutionary divergence that includes the core and the extrachromosomal elements leading to species formation.
We isolated a putative citrate transporter of the tripartite tricarboxylate transporter (TTT) class from a metagenomic library of activated sludge from a sewage treatment plant. The transporter, dubbed TctA_ar, shares ∼50% sequence identity with TctA of Comamonas testosteroni (TctA_ct) and other β-Proteobacteria, and contains two 20-amino acid repeat signature sequences, considered a hallmark of this particular transporter class. The structures for both TctA_ar and TctA_ct were modeled with I-TASSER and two possible structures for this transporter family were proposed. Docking assays with citrate resulted in the corresponding sets of proposed critical residues for function. These models suggest functions for the 20-amino acid repeats in the context of the two different architectures. This constitutes the first attempt at structure modeling of the TTT family, to the best of our knowledge, and could aid functional understanding of this little-studied family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.