Introduction An ideal filling material should hermetically seal the communication pathways between the canal system and surrounding tissues. Therefore, during the last few years, the development of obturation materials and techniques to create optimal conditions for the proper healing of apical tissues has been a focus of interest. The effects of calcium silicate‐based cements (CSCs) on periodontal ligament cells have been investigated, and promising results have been obtained. To date, there are no reports in the literature that have evaluated the biocompatibility of CSCs using a real‐time live cell system. Therefore, this study aimed to evaluate the real‐time biocompatibility of CSCs with human periodontal ligament cells (hPDLCs). Methodology hPDLC were cultured with testing media of endodontic cements for 5 days: TotalFill‐BC Sealer, BioRoot RCS, Tubli‐Seal, AH Plus, MTA ProRoot, Biodentine, and TotalFill‐BC RRM Fast Set Putty. Cell proliferation, viability, and morphology were quantified using real‐time live cell microscopy with the IncuCyte S3 system. Data were analyzed using the one‐way repeated measures (RM) analysis of variance multiple comparison test ( p < .05). Results Compared to the control group, cell proliferation in the presence of all cements was significantly affected at 24 h ( p < .05). ProRoot MTA and Biodentine lead to an increase in cell proliferation; there were no significant differences with the control group at 120 h. In contrast, Tubli‐Seal and TotalFill‐BC Sealer inhibited cell growth in real‐time and significantly increased cell death compared to all groups. hPDLC co‐cultured with sealer and repair cements showed a spindle‐shaped morphology except with cements Tubli‐Seal and TotalFill‐BC Sealer where smaller and rounder cells were obtained. Conclusions The biocompatibility of the endodontic repair cements performed better than the sealer cements, highlighting the cell proliferation of the ProRoot MTA and Biodentine in real‐time. However, the calcium silicate‐based TotalFill‐BC Sealer presented a high percentage of cell death throughout the experiment similar to that obtained.
The purpose of this research was to analyze the eating patterns of preschool- and school-aged children with ASD, as provided by their families, in the La Araucanía Region of Chile. It involved a cross-sectional study with 72 families with children diagnosed with ASD aged between 2 and 12 years old. Food selectivity, appetite, body mass index (BMI) and frequency of food consumption were studied. The research determined that 97.67% present food selectivity, corresponding to alterations in the frequency of consumption of specific food groups. Moreover, 93.06%, 90.28%, 80.56% and 62.50% of children in the study do not meet the daily recommendations for fruit, fish, water and vegetable consumption, respectively. Therefore, it is important for these findings to be considered when designing and carrying out educational interventions regarding food in families with children with ASD for greater assertiveness and effectiveness in improving health.
Copper nanowires, Cu-NWs may have a good antimicrobial effect in endodontic treatment. The objective of this work was to synthesize, characterize and evaluate the antibacterial activity of Cu-NWs on strains obtained from human root canal. A wide distribution of Cu-NWs diameters from 30 to 90 nm was obtained with lengths ranging from 5 to 40 μm. Structural analysis of Cu-NWs showed crystalline planes, which corresponded to Cu, with preferential growth in the direction [110]. The geometric mean MICs was of 289.30 μg/mL, with a MIC50 of 256 μg/mL and a MIC90 of 512 μg/mL for Cu-NWs. Cellular viability of 28 a biofilm tends to decrease the longer it is exposed to Cu-NWs. Synthesized and characterized Cu-NWs have a good antimicrobial effect against clinical strains used in the present study and has a potential to be used for disinfection of the root canal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.