A predictive understanding of the mechanisms of RNA cleavage is important for the design of emerging technology built from biological and synthetic molecules that have promise for new biochemical and medicinal applications. Over the past 15 years, RNA cleavage reactions involving 2'-O-transphosphorylation have been discussed using a simplified framework introduced by Breaker that consists of four fundamental catalytic strategies (designated α, β, γ, and δ) that contribute to rate enhancement. As more detailed mechanistic data emerge, there is need for the framework to evolve and keep pace. We develop an ontology for discussion of strategies of enzymes that catalyze RNA cleavage via 2'-O-transphosphorylation that stratifies Breaker's framework into primary (1°), secondary (2°) and tertiary (3°) contributions to enable more precise interpretation of mechanism in the context of structure and bonding. Further, we point out instances where atomic-level changes give rise to changes in more than one catalytic contribution, a phenomenon we refer to as 'functional blurring'. We hope that this ontology will help clarify our conversations and pave the path forward toward a consensus view of these fundamental and fascinating mechanisms. The insight gained will deepen our understanding of RNA cleavage reactions catalyzed by natural protein and RNA enzymes, as well as aid in the design of new engineered DNA and synthetic enzymes.
We develop a new deep potentialrange correction (DPRc) machine learning potential for combined quantum mechanical/molecular mechanical (QM/MM) simulations of chemical reactions in the condensed phase. The new range correction enables short-ranged QM/MM interactions to be tuned for higher accuracy, and the correction smoothly vanishes within a specified cutoff. We further develop an active learning procedure for robust neural network training. We test the DPRc model and training procedure against a series of six nonenzymatic phosphoryl transfer reactions in solution that are important in mechanistic studies of RNA-cleaving enzymes. Specifically, we apply DPRc corrections to a base QM model and test its ability to reproduce free-energy profiles generated from a target QM model. We perform these comparisons using the MNDO/d and DFTB2 semiempirical models because they differ in the way they treat orbital orthogonalization and electrostatics and produce free-energy profiles which differ significantly from each other, thereby providing us a rigorous stress test for the DPRc model and training procedure. The comparisons show that accurate reproduction of the free-energy profiles requires correction of the QM/MM interactions out to 6 Å. We further find that the model’s initial training benefits from generating data from temperature replica exchange simulations and including high-temperature configurations into the fitting procedure, so the resulting models are trained to properly avoid high-energy regions. A single DPRc model was trained to reproduce four different reactions and yielded good agreement with the free-energy profiles made from the target QM/MM simulations. The DPRc model was further demonstrated to be transferable to 2D free-energy surfaces and 1D free-energy profiles that were not explicitly considered in the training. Examination of the computational performance of the DPRc model showed that it was fairly slow when run on CPUs but was sped up almost 100-fold when using NVIDIA V100 GPUs, resulting in almost negligible overhead. The new DPRc model and training procedure provide a potentially powerful new tool for the creation of next-generation QM/MM potentials for a wide spectrum of free-energy applications ranging from drug discovery to enzyme design.
Allosteric mechanism of proteins is essential in biomolecular signaling. An important aspect underlying this mechanism is the communication pathways connecting functional residues. Here, a Monte Carlo (MC) path generation approach is proposed and implemented to define likely allosteric pathways through generating an ensemble of maximum probability paths. The protein structure is considered as a network of amino acid residues, and inter-residue interactions are described by an atomistic potential function. PDZ domain structures are presented as case studies. The analysis for bovine rhodopsin and three myosin structures are also provided as supplementary case studies. The suggested pathways and the residues constituting the pathways are maximally probable and mostly agree with the previous studies. Overall, it is demonstrated that the communication pathways could be multiple and intrinsically disposed, and the MC path generation approach provides an effective tool for the prediction of key residues that mediate the allosteric communication in an ensemble of pathways and functionally plausible residues. The MCPath server is available at http://safir.prc.boun.edu.tr/clbet_server.
We perform molecular dynamics simulations, based on recent crystallographic data, on the 8–17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.