According to their high electron density and ultrasmall size, gold nanoclusters (AuNCs) have unique luminescence and photoelectrochemical properties that make them very attractive for various biomedical fields. These applications require a clear understanding of their interaction with biological membranes. Here we demonstrate the ability of the AuNCs as markers for lipidic bilayer structures such as synthetic liposomes and biological extracellular vesicles (EVs). The AuNCs can selectively interact with liposomes or EVs through an attractive electrostatic interaction as demonstrated by zetametry and fluorescence microscopy. According to the ratio of nanoclusters to vesicles, the lipidic membranes can be fluorescently labeled without altering their thickness until charge reversion, the AuNCs being located at the level of the phosphate headgroups. In presence of an excess of AuNCs, the vesicles tend to adhere and aggregate. The strong adsorption of AuNCs results in the formation of a lamellar phase as demonstrated by cryo-transmission electron microscopy and small-angle X-ray scattering techniques.
Gold nanoclusters (Au NCs) are attractive luminescent nanoprobes for biomedical applications. In vivo biosensing and bioimaging requires the delivery of the Au NCs into subcellular compartments. In this view, we explore here the possible encapsulation of ultra-small-sized red and blue emitting Au NCs into liposomes of various sizes and chemical compositions. Different methods were investigated to prepare vesicles containing Au NCs in their lumen. The efficiency of the process was correlated to the structural and morphological aspect of the Au NCs’ encapsulating vesicles thanks to complementary analyses by SAXS, cryo-TEM, and confocal microscopy techniques. Cell-like-sized vesicles (GUVs) encapsulating red or blue Au NCs were successfully obtained by an innovative method using emulsion phase transfer. Furthermore, exosome-like-sized vesicles (LUVs) containing Au NCs were obtained with an encapsulation yield of 40%, as estimated from ICP-MS.
The oocyte microenvironment constituted by the follicular fluid (FF) is a key for the optimal development of female gametes. Its composition reflects the physiological state of the ovarian follicle. The particularity of FF is to contain a huge diversity of extracellular vesicles specific to women, in the same way as seminal plasma in men. Here, we described and compared morphological aspects of broad subcategories of human FF-related Extracellular Vesicles (EVs). EVs participate in physiological and pathological processes and have potential applications in diagnostics or therapeutics. EVs isolated from FF are involved in different biological functions related to follicular growth, oocyte maturation, and embryo development. However, knowledge on the morphology of FF-derived EVs is limited, mainly due to their sub-micrometer size and to intrinsic limitations in methods applied for their characterization. The aim of this study was to provide a comprehensive morphological description of EVs from FF of healthy subjects and quantification. EVs separation was realized by centrifugation, with comparison of the EV yield obtained from differential centrifugation and one-step ultracentrifugation. Cryo-Transmission Electron Microscopy was used to reveal the morphology, size, and phenotype of EVs. Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA) were used to quantify and analyze the size distribution for each centrifugation step. We performed a comprehensive inventory of human follicular fluid EVs. We show that human FF contains a huge diversity of EVs. This study brings novel insights on EVs from normal FF and provides a reference for further studies of EVs in ovarian diseases.
The imaging of different intercellular regions is attracting growing interest in the fields of biosensing, drug delivery, and gene therapy for cancer treatment. We present the synthesis of luminescent gold nanoclusters (AuNCs), grafted with a PEGylated U11 peptide derivative, for tumor recognition and their capacity to label the nucleus of pancreatic cancer cells. The short peptide named C3E6U11, used to synthesize and functionalize gold nanoclusters, is composed of a tricysteine sequence with side-chain thiol residues as peptide anchors for the Au nanoclusters together with the recognition peptide domain (U11). The active targeting red- or blue-emitting AuNCs can label pancreatic cancer cells and localize preferentially in the nucleus. The presence of U11 at their surface facilitates their penetration into pancreatic cell nuclei. Finally, in vivo imaging experiments in early embryos and free-swimming juvenile zebrafish are also performed to evaluate their biodistribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.