The tumor suppression activity of p53 is frequently impaired in cancers even when a wild-type copy of the gene is still present, suggesting that a dominant-negative effect is exerted by some of p53 mutants and isoforms. p63 and p73, which are related to p53, have also been reported to be subjected to a similar loss of function, suggesting that a dominant-negative interplay might happen between p53, p63 and p73. However, to which extent p53 hotspot mutants and isoforms of p53, p63 and p73 are able to interfere with the tumor suppressive activity of their siblings as well as the underlying mechanisms remain undeciphered. Using yeast, we showed that a dominant-negative effect is widely spread within the p53/p63/p73 family as all p53 loss-of-function hotspot mutants and several of the isoforms of p53 and p73 tested exhibit a dominant-negative potential. In addition, we found that this dominant-negative effect over p53 wild-type is based on tetramer poisoning through the formation of inactive hetero-tetramers and does not rely on a prion-like mechanism contrary to what has been previously suggested. We also showed that mutant p53-R175H gains the ability to inhibit p63 and p73 activity by a mechanism that is only partially based on tetramerization.
Epithelial ovarian cancers (EOC) are often diagnosed at an advanced stage with carcinomatosis and a poor prognosis. First-line treatment is based on a chemotherapy regimen combining a platinum-based drug and a taxane-based drug along with surgery. More than half of the patients will have concern about a recurrence. To improve the outcomes, new therapeutics are needed, and diverse strategies, such as immunotherapy, are currently being tested in EOC. To better understand the global immune contexture in EOC, several studies have been performed to decipher the landscape of tumor-infiltrating lymphocytes (TILs). CD8+ TILs are usually considered effective antitumor immune effectors that immune checkpoint inhibitors can potentially activate to reject tumor cells. To synthesize the knowledge of TILs in EOC, we conducted a review of studies published in MEDLINE or EMBASE in the last 10 years according to the PRISMA guidelines. The description and role of TILs in EOC prognosis are reviewed from the published data. The links between TILs, DNA repair deficiency, and ICs have been studied. Finally, this review describes the role of TILs in future immunotherapy for EOC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.