Increased lymphangiogenesis is a common feature of cancer development and progression, yet the influence of impaired lymphangiogenesis on tumor growth is elusive. C3HBA breast cancer and KHT-1 sarcoma cell lines were implanted orthotopically in Chy mice, harboring a heterozygous inactivating mutation of vascular endothelial growth factor receptor-3, resulting in impaired dermal lymphangiogenesis. Accelerated tumor growth was observed in both cancer models in Chy mice, coinciding with reduced peritumoral lymphangiogenesis. An impaired lymphatic washout was observed from the peritumoral area in Chy mice with C3HBA tumors, and the number of macrophages was significantly reduced. While fewer macrophages were detected, the fraction of CD163+ M2 macrophages remained constant, causing a shift towards a higher M2/M1 ratio in Chy mice. No difference in adaptive immune cells was observed between wt and Chy mice. Interestingly, levels of pro- and anti-inflammatory macrophage-associated cytokines were reduced in C3HBA tumors, pointing to an impaired innate immune response. However, IL-6 was profoundly elevated in the C3HBA tumor interstitial fluid, and treatment with the anti-IL-6 receptor antibody tocilizumab inhibited breast cancer growth. Collectively, our data indicate that impaired lymphangiogenesis weakens anti-tumor immunity and favors tumor growth at an early stage of cancer development.
In peritoneal dialysis (PD) patients, the frequent exposure to "unphysiological" dialysis fluids elicits a chronic state of a low-grade peritoneal inflammation leading to interstitial matrix remodeling and angiogenesis. Proinflammatory cytokines are important regulators involved in this inflammatory process that ultimately leads to dysfunction of the peritoneum as a dialysis membrane. We aimed to measure the local concentrations of proinflammatory cytokines in the peritoneal interstitial fluid (IF). Furthermore, we wanted to assess how the driving forces for fluid and solute exchanges are affected in a remodeled interstitial matrix and thus measured the colloid osmotic pressure (COP) gradient in rats that were exposed to chronic PD. After 8 wk of peritoneal dialysis, IF from peritoneum was isolated using a centrifugation method, and was analyzed for cytokine content and COP along with plasma. For several of the proinflammatory cytokines there were gradients from IF to plasma, showing local production. For some cytokines, the concentration in IF was increased severalfold, whereas IL-18 was increased systemically due to PD. Furthermore, the presence of the catheter per se seemed to increase cytokine levels. COP in IF was significantly decreased in the PD group, while collagen and hyaluronan content was increased. Collectively, our data suggest that the increased levels of proinflammatory cytokines after PD may be an integral component of the development of fibrosis and angiogenesis commonly seen in PD patients, and the decreased COP in IF after chronic PD may shift the Starling equilibrium across peritoneal capillaries to an absorptive state.
Collagen and glycosaminoglycans (GAGs) constituting the ECM may limit the space available and thus exclude macromolecules from a fraction of the interstitial fluid (IF) phase. This exclusion phenomenon is of importance for transcapillary fluid and solute exchange. The purpose of the study was to examine the range of interstitial exclusion in rat skin by using probes within a span of molecular weights and electrical charge and also to test if a change in interstitial composition, occurring as a consequence of aging, affected exclusion. To this end, we used a novel approach, involving the exact determination of albumin concentration and mass in IF and tissue eluate by HPLC and thereafter, expressing the corresponding numbers relative to albumin for a set of probe proteins assessed by quantitative proteomics. Albumin was excluded from 55±4% (n=8) of the extracellular fluid phase. There was a highly significant, positive correlation between probe Stokes-Einstein (SE) radius and fractional excluded volume (VEF), described by VEF=0.078·SE radius+0.269 (P<0.001), and oppositely, a negative correlation between probe isoelectric point (pI) and exclusion for proteins with comparable size, VEF=-0.036·pI+0.719 (P=0.04). Aging resulted in a significant reduction in skin hydration and sulfated GAGs, a moderate increase in hyaluronan, and a corresponding, reduced VEF for albumin and the other macromolecular probes. Our findings suggest that the changes in the ECM in aged skin may result in delayed adjustments of fluid perturbations and reduced ability for salt storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.