Intra-city railway areas are deemed large greenspaces and are believed to be key in enhancing the diversity and dynamics of urban flora. In the current study, the floristic composition and diversity along intra-city railway and tram tracks in Alexandria were surveyed. The floristic composition of the plant communities in relation to environmental factors, ecological indicators, and level of human impact was analyzed using multivariate analysis (two-way indicator species analysis (TWINSPAN) for classification and detrended correspondence analysis (DECORANA) for ordination. The multivariate ordination techniques (CCA) revealed differences in the environmental factors and climatic factors influencing the floristic composition of the railway and tram track habitats. Tram tracks suffered higher human impact while maintaining higher vitality and cover compared to train tracks. Species recorded were mainly therophytes, followed by phanerophytes and hemicryptophytes dominated by native species; however, invasive species’ contribution was higher compared to surrounding regions. The number of invasive species was greater in railway areas compared to tram track areas (19 and 15, respectively). The occurrence of two endemic species (Sinapis allionii and Sonchus macrocarpus) with limited national distribution highlights the importance of these habitats as valuable refuge areas for rare and endangered species worthy of conservation action.
The role of heritage sites as a shelter for biodiversity is overlooked. Eight archeological sites representing different landscapes in Alexandria City were surveyed, from which 59 stands were sampled between April 2019 and March 2021. The archeological sites and the relictual landscapes are geographically dispersed and are arranged here from west to east, representing the full range of environmental variation within the study area. The selection of stands in each site was based on the area and the variability within the habitats, the physiography, and the levels of disturbance. A composite soil sample was collected from each site. Two-way indicator species analysis (TWINSPAN) and detrended correspondence analysis (DECORANA) were carried out to identify the plant communities in the study area. The recorded taxa, their national geographical distribution, life forms, habitats, chorological types, and vegetation groups are listed. A total of 221 specific taxa, 172 native and 49 alien non-native species (representing some 10.3% of the whole range of Egyptian flora), belonging to 150 genera and 44 families, are reported in the present study. Only two endemic species were recorded in the studied urban habitats. The phytosociological analysis of the sites showed differences among vegetation types found in the archeological sites as a function of the varying degrees of enthronization. A significant effect of archeological site and relictual landscape on species diversity was observed as indicated using the richness, Shannon’s and Simpson’s indices. Flat plains are substantially more diverse than any of the other habitats in the present study, followed by the habitat of rocky ridge slope. The present study found evidence of an ecological legacy that persists today within the semi-arid climatic ecosystem of Alexandria City. The study highlights the urgent need for measures to maintain cultural landscapes while considering the conservation of biodiversity within the archeological sites. It is hoped that the outcomes of the current study can provide guidance on the potential integration of biodiversity conservation in planning the management of archeological sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.