The objective of the study was to compare the effect of feeding mixed chelated minerals (Mn, Cu and Zn) methionine on dairy cow productive performance and milk yield and its components. The trial was conducted with dairy cows across various stage of lactation. The experimental treatments include chelated minerals (15 mg Zn as Zn Met, 20 mg Mn as Mn Met, 10 mg Cu as Cu Met). Inorganic mixture contains (15 mg Zn as ZnSO 4 , 20 mg Mn as MnSO 4 , 10 mg Cu as CuSO 4 ) in sulphate forms. The experiment was commenced in the dry period of cows, 6 weeks before calving, and after calving the first three months of lactation was taken into consideration. Milk samples were collected from each cow evening and morning for estimation of milk yield production. The inorganic metals caused a significant decline (P < 0.05) in digestibility coefficients, nutritive value, nitrogen utilization, cell wall constituents, total VFA's, rumen volume, microbial and nitrogen synthesis compared to the organic metals. The treated group (chelated minerals) improved the milk yield, and the milk fat percentage of animals across various stages of lactation as compared to inorganic minerals treated group of animals, and no significant differences were observed among groups concerning the entire blood constituent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.