Type inference over partial contexts in dynamically typed languages is challenging. In this work, we present a graph neural network model that predicts types by probabilistically reasoning over a program's structure, names, and patterns. The network uses deep similarity learning to learn a TypeSpacea continuous relaxation of the discrete space of types-and how to embed the type properties of a symbol (i.e. identifier) into it. Importantly, our model can employ one-shot learning to predict an open vocabulary of types, including rare and user-defined ones. We realise our approach in Typilus for Python that combines the TypeSpace with an optional type checker. We show that Typilus accurately predicts types. Typilus confidently predicts types for 70% of all annotatable symbols; when it predicts a type, that type optionally type checks 95% of the time. Typilus can also find incorrect type annotations; two important and popular open source libraries, fairseq and allennlp, accepted our pull requests that fixed the annotation errors Typilus discovered. CCS Concepts: • Computing methodologies → Machine learning; • Software and its engineering → Language features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.