Dalam penelitian ini menggunakan metode k-means, metode ini dapat digunakan untuk menjadikan beberapa obat yang mirip menjadi suatu kelompok data tertentu. Salah satu cara untuk mengetahui tingkat kemiripan data adalah melalui perhitungan jarak antar data. Semakain kecil jarak antar data semakin tinggi tingkat kemiripan data tersebut dan sebaliknya semakin besar jarak antar data maka semakin rendah tingkat kemiripannya. Tujuan akhir clustering adalah untuk menentukan kelompok dalam sekumpulan data yang tidak berlabel, karena clustering merupakan suatu metode unsupervised dan tidak terdapat suatu kondisi awal untuk sejumlah cluster yang mungkin terbentuk dalam sekumpulan data, maka dibutuhkan suatu evaluasi hasil clustering. Berdasarkan evaluasi yang dilakukan terhadap hasil clustering dengan nilai dari silhouette coeficient = 0,4854. In this study using the k-means method, this method can be used to make several similar drugs into a certain data group. One way to determine the level of similarity of the data is through the calculation of the distance between the data. The smaller the distance between the data, the higher the level of similarity between the data and vice versa, the greater the distance between the data, the lower the similarity level. For a number of clusters that may be formed in a data set, an evaluation of the results of clustering is needed. Based on the evaluation carried out on the results of clustering with the value of the silhouette coefficient = 0.4854.
One of the implementation of machine learning in medical world is to analyze medical dataset. Medical dataset used in this research was by using medicine dataset. Support Vector Machine Method is classification method of supervised learning, its algorithm works by using nonlinear mapping to change the data of real training into higher dimension. Selection of SVM Method is as solution to classify the characteristics of medicine. This method has function to make some similar medicines to be a group of certain data. The aim of this research was to obtain classification model which has high accuracy or small error in conducting classification of medicine data. Based on testing conducted, medicine classification using SVM produced accuracy=0,87.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.