Recent studies have indicated that tau, a protein involved in Alzheimer's disease and other neurodegenerative disorders, has a propensity to undergo liquid–liquid phase separation (LLPS). However, the mechanism of this process remains unknown. Here, we demonstrate that tau LLPS is largely driven by intermolecular electrostatic interactions between the negatively charged N-terminal and positively charged middle/C-terminal regions, whereas hydrophobic interactions play a surprisingly small role. Furthermore, our results reveal that, in contrast to previous suggestions, phosphorylation is not required for tau LLPS. These findings provide a foundation for understanding the mechanism by which phosphorylation and other posttranslational modifications could modulate tau LLPS in the context of specific physiological functions as well as pathological interactions.
Liquid-liquid phase separation (LLPS) of proteins that leads to formation of membrane-less organelles is critical to many biochemical processes in the cell. However, dysregulated LLPS can also facilitate aberrant phase transitions and lead to protein aggregation and disease. Accordingly, there is great interest in identifying small molecules that modulate LLPS. Here, we demonstrate that 4,4’-dianilino-1,1’-binaphthyl-5,5’-disulfonic acid (bis-ANS) and similar compounds are potent biphasic modulators of protein LLPS. Depending on context, bis-ANS can both induce LLPS de novo as well as prevent formation of homotypic liquid droplets. Our study also reveals the mechanisms by which bis-ANS and related compounds modulate LLPS and identify key chemical features of small molecules required for this activity. These findings may provide a foundation for the rational design of small molecule modulators of LLPS with therapeutic value.
One of the hallmarks of Alzheimer’s disease and several other neurodegenerative disorders is the aggregation of tau protein into fibrillar structures. Building on recent reports that tau readily undergoes liquid–liquid phase separation (LLPS), here we explored the relationship between disease-related mutations, LLPS, and tau fibrillation. Our data demonstrate that, in contrast to previous suggestions, pathogenic mutations within the pseudorepeat region do not affect tau441’s propensity to form liquid droplets. LLPS does, however, greatly accelerate formation of fibrillar aggregates, and this effect is especially dramatic for tau441 variants with disease-related mutations. Most important, this study also reveals a previously unrecognized mechanism by which LLPS can regulate the rate of fibrillation in mixtures containing tau isoforms with different aggregation propensities. This regulation results from unique properties of proteins under LLPS conditions, where total concentration of all tau variants in the condensed phase is constant. Therefore, the presence of increasing proportions of the slowly aggregating tau isoform gradually lowers the concentration of the isoform with high aggregation propensity, reducing the rate of its fibrillation. This regulatory mechanism may be of direct relevance to phenotypic variability of tauopathies, as the ratios of fast and slowly aggregating tau isoforms in brain varies substantially in different diseases.
Tau is a microtubule-associated protein that plays a major role in Alzheimer's disease (AD) and other tauopathies. Recent reports indicate that, in the presence of crowding agents, tau can undergo liquid-liquid phase separation (LLPS), forming highly dynamic liquid droplets. Here, using recombinantly expressed proteins, turbidimetry, fluorescence microscopy imaging, and fluorescence recovery after photobleaching (FRAP) assays, we show that the divalent transition metal zinc strongly promotes this process, shifting the equilibrium phase boundary to lower protein or crowding agent concentrations. We observed no tau LLPS-promoting effect for any other divalent transition metal ions tested, including Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , and Cu 2+ . We also demonstrate that multiple zinc-binding sites on tau are involved in the LLPS-promoting effect and provide insights into the mechanism of this process. Zinc concentration is highly elevated in AD brains, and this metal ion is believed to be an important player in the pathogenesis of this disease. Thus, the present findings bring a new dimension to understanding the relationship between zinc homeostasis and the pathogenic process in AD and related neurodegenerative disorders. ____________________________________ https://www.jbc.org/cgi/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.