Objective: To determine the quality of water, heavy metal content of edible muscles of a piscivorous fish (Protopterus annectens) and assess the health risks associated with using water and consumption of P. annectens from Nyabarongo and Nyabugogo rivers of Rwanda. Results: All the water quality parameters were within World Health Organization's acceptable limits except total nitrogen, iron, manganese and lead levels. Edible muscles of Protopterus annectens contained 272.8 ± 0.36, 292.2 ± 0.25, 8.8 ± 0.36, 135.2 ± 0.15, 148.0 ± 0.21 and 432. 0 ± 0.50 mg/kg of iron, manganese, copper, zinc, chromium and lead at Ruliba station and 336.0 ± 0.70, 302.6 ± 1.22, 6.4 ± 0.26, 44.7 ± 0.20, 138.2 ± 0.17 and 302.4 ± 1.50 mg/kg of iron, manganese, copper, zinc, chromium and lead at Kirinda bridge of Nyabarongo river. Health risk assessments indicated that though ingestion and dermal contact with heavy metals in water from the rivers may not cause obvious health effects, consumption of Protopterus annectens from Nyabarongo river may lead to deleterious health effects.
Syanyonja village in the gold district of Busia, South East of the Republic of Uganda contain geologically epigenetic gold quartz vein deposits in carbonate-altered mafic metavolcanic rocks, deposited as quartz reefs in mineralized shear zones. In supracrustal rocks, alluvial gold is obtained from weathered auriferous quartz veins, which are of late orogenic granitic activity. The Syanyonja gold deposits have long been subjected to artisanal and small-scale gold mining (ASGM) by the locals for livelihood. This study determined the amount of mercury discharged with tailings into Namukombe stream, a major water body in Syanyonja village and investigated the impacts of ASGM on the mining population and the environment. Quantitation of mercury discharged with tailings was done by mass balance method. Field survey at the mining sites was done followed by administration of questionnaires to 50 stampeders in the village. The study indicates that about 8% of mercury mixed with auriferous materials are lost in tailings, accounting for an annual mercury release of about 1.757 kg into the environment. Socio-demographic results indicate that the majority of the mining population (64%) are male and ASGM have left health and environmental footprints, which directly or indirectly affects the population. The most common health problems among miners are malaria (36%) and abdominal pain (20%). The standard of living of the miners are evidently low, and most mines are characterized by school dropouts, prostitutes and thieves. Mining sites have deplorably poor hygiene, with evident burning of amalgams to recover gold. ASGM have been accompanied by wanton mowing down of vegetation, land degradation as well as mercuric pollution of water, air, land and aquatic ecosystems. It is suggested that the Ugandan government should re-enforce committees to follow up on ASGM activities, train artisans on sustainable gold mining using borax, magnets, sluice boxes as well as take up farming actively as an alternative.
Water is an indispensable natural resource that is often prodigiously threatened by anthropomorphic activities. This study evaluated the physicochemical properties of water and selected heavy metals in edible muscles of a piscivorous fish (Protopterus annectens) from Nyabarongo and Nyabugogo rivers of Rwanda. Edibility health risk was evaluated using the target hazard quotient method. Water samples were taken in triplicate from Ruliba station and Kirinda bridge on Nyabarongo river and Giticyinyoni on Nyabugogo river. Fish samples were obtained from the sampling stations on Nyabarongo river. All samples were analyzed following standard methods and analytical results indicated that the average temperature, pH, total dissolved solids and electrolytic conductivity of water from the rivers were within WHO acceptable limits. The statistical mean concentrations of the ionic components of the water samples were 1.61 ± 0.03, 0.53 ± 0.002, 0.24 ± 0.02 and 0.051 ± 0.01 mg/L for Fe, Mn, Cu and Pb respectively at Ruliba station and 0.63 ± 0.02, 0.02 ± 0.002, 0.09 ± 0.01, 0.06 ± 0.002 and 0.75 ± 0.02 mg/L for Fe, Mn, Zn, Cr and Pb respectively at Kirinda bridge. Water from Giticyinyoni had 1.57 ± 0.02, 0.49 ± 0.03, 0.29 ± 0.058, 0.43 ± 0.058, 0.15 ± 0.00 and 0.59 ± 0.058 mg/L of Fe, Mn, Cu, Zn, Cr and Pb respectively. Zinc, Cu, Cr and Cd were below detection limits in samples from Ruliba station and Kirinda bridge (Nyabarongo river). Edible muscles of P. annectens from Nyabarongo river contained 272.8 ± 0.36, 292.2 ± 0.25, 8.8 ± 0.36, 135.2 ± 0.15, 148.0 ± 0.21 and 432. 0 ± 0.50 mgkg-1 for Fe, Mn, Cu, Zn, Cr and Pb at Ruliba station and 336.0 ± 0.70, 302.6 ± 1.22, 6.4 ± 0.26, 44.7 ± 0.20, 138.2 ± 0.17 and 302.4 ± 1.50 mgkg-1 for Fe, Mn, Cu, Zn, Cr and Pb respectively at Kirinda bridge. Health risk assessment indicated that consumption of the edible muscles of P. annectens may lead to deleterious health effects as reflected by values of target hazard quotients being greater than one. Therefore, the Rwandese government should lay strategies to reduce pollution of the rivers. Further research should evaluate the heavy metal content of metabolically active organs of P. annectens from Nyabarongo river as well as the microbiological profile of water from the rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.