Carbon capture and storage (CCS) is vital to climate change mitigation, and has application across the economy, in addition to facilitating atmospheric carbon dioxide removal resulting in emissions offsets and net negative emissions. This contribution reviews the state-of-the-art and identifies key challenges which must be overcome in order to pave the way for its large-scale deployment.
The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg). The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis, or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients. Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment, and good manufacturing practice facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases (AILD), chronic rejection, and posttransplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases, and solid organ transplantations. There have not been any new therapies for the AILD for more than three decades; thus, the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior, and microenvironment of Treg before applying the cells to the patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.