In this study, bamboo impregnated with nanoscale zero-valent iron (nZVI) and nanoscale manganese (nMn) were prepared by the aqueous phase borohydride reduction method and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and PIXE analysis. The synthesized nMn-bamboo and nZVI-bamboo composites were subsequently applied to the sorption of methylene blue (MB) dye from aqueous solution. The adsorption of MB dye was investigated under various experimental conditions such as pH, contact time, initial concentration of MB dye and adsorbent dosage. The results showed that the synthesized nZVI-bamboo composite was more effective than nMn-bamboo composite in terms of higher MB dye adsorption capacity of 322.5 mg/g compared to 263.5 mg/g of nMn-bamboo composite. At a concentration of 140 mg/L MB dye, 0.02 g of nZVI-bamboo and nMn-bamboo composites resulted in 79.6% and 78.3% removal, respectively, at 165 rpm, contact time of 120 min and at a solution pH of 7.6. The equilibrium data was best represented by Freundlich isotherm model and the pseudo-second order kinetic model better explained the kinetic data for both nZVI-bamboo and nMn-bamboo composites.
Influence of abattoir wastes on physicochemical and microbiological properties of soil samples obtained from Akwa Ibom State, Southern Nigeria were investigated using standard analytical and microbiological methods. Studied abattoirs and the control soils were in the sandy-clay-loamy soil category with varying quantities of sand, silt and clay. Bulk density, pH, electrical conductivities, salinity, moisture content, total organic and carbon content, cation exchange capacities, total petroleum hydrocarbon, nitrogen and phosphorus contents of studied abattoir soils were higher than in control. Essential elements (K, Na, Ca, and Mg) and trace metals (Fe, Zn, Cd, Cu, Pb, Cr and Ni) levels were also higher in abattoir soils than in control though were within the permissible limit in soil except for Fe. Metal pollution index (MPI), enrichment factor (EF), geo-accumulation index (Igeo), degree of contamination (Cdeg) and pollution load index (PLI) of trace metals have also been calculated using existing pollution models. Microbial studies revealed total heterotrophic bacteria ranged from 6.41±0.43 to 7.91±0.58 log 10 CFU/g while fungal count ranged from 4.94±0.26 to 5.79±0.34 log 10 CFU/g. Among the four (4) locations, IK2 had the highest heterotrophic bacterial
Original Research Article
A new CuII complex (1) was synthesized by reacting 4-chlorobenzoic acid, benzimidazole and metal salt using ethanol–water (1:1 v/v) as a solvent at room temperature. The complex was characterized by single-crystal X-ray analysis, FTIR and UV—vis spectroscopy. A distorted square pyramidal geometry of the CuII center was observed from the single-crystal X-ray study, which also revealed that the uncoordinated oxygen atom of the carboxylate anions forms intermolecular hydrogen bonds with the N–H groups of the benzimidazole ligands. The Hirschfeld analysis results revealed that the molecular packing of 1 is mainly controlled by O…H (12.7%), Cl..H (16.4%), C...H (24.4%) and H...H (31.1%) contacts. Density functional theory (DFT) calculations were performed to compute the HOMO–LUMO energy gap and electrostatic potential map for the charge transfer regions within the molecule and identify the possible electrophilic and nucleophilic regions of the molecule. A number of reactivity parameters calculated on the basis of EHOMO and ELUMO show its significant polarizability and reactive nature. Complex 1 was also examined and screened for its potential antibacterial effect using the agar well diffusion method. The newly synthesized complex showed an effective and higher killing rate of the microbes in antibacterial testing compared to the parent ligand. The CuII complex (1) showed an enhanced inhibitory activity against P. aeruginosa and equally demonstrated greater binding affinity with DNA gyrase (1KIJ) compared to its ligands according to the molecular docking studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.